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PREFACE.

The following pages contain an elementary course of study in

the resistance of materials and the mechanics of beams, columns

and shafts, designed for the use of classes in technical schools and

colleges. It should be preceded by a good training in mathematics

and theoretical mechanics, and be followed by a special study of

the properties of different qualities of materials, and by detailed

exercises in construction and design.

As the plan of the book is to deal mainly with the mechanics

of the subject, extended tables of the results of tests on different

kinds and qualities of materials are not given. The attempt,

however, has been made to state average values of the quantities

which express the strength and elasticity of what may be called

the six principal materials. On account of the great variation of

these values in different grades of the same material the wisdom

of this attempt may perhaps be questioned, but the experience of

the author in teaching the subject during the past seven years

has indicated that the best results are attained by forming at first

a definite nucleus in the mind of the student, around which may
be later grouped the multitude of facts necessary in his own

particular department of study and work.

As the aim of all education should be to develop the powers
of the mind rather than impart to it mere information, the author

has endeavored not only to logically set forth the principles and

theory of the subject, but to so arrange the matter that students

will be encouraged and required to think for themselves. The
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IV PREFACE.

problems which follow each article will be found very useful for

this purpose. Without the solution of many numerical exercises

it is indeed scarcely possible to become well grounded in the

theory.

In the chapters on flexure many problems relating to I beams

and other wrought iron shapes are presented. The subject of

continuous beams is not developed to its full extent, but it is

thought that enough is given for an elementary course. The

resistance of columns has been treated with as much fullness as

now appears practicable from a theoretical point of view.

Considerable attention has been paid to combined stresses, and

particularly to the combination of torsion and flexure in shafts.

A new formula for the case of repeated stresses is offered as a

substitute for those of Launhardt and Weyrauch. The attempt

has been made throughout to render the examples, exercises and

problems of a practical nature, and also of a character to clearly

illustrate the principles of the theory and the methods of

investigation.

MANSFIELD MERRIMAN.

BETHLEHEM, PA., June, 1885.



CONTENTS.

CHAPTER I.

ON THE RESISTANCE AND ELASTICITY OF MATERIALS.

ART. i. AVERAGE WEIGHTS .... i

2. STRESSES AND STRAINS .... 3

3. EXPERIMENTAL LAWS ..... 5

4. ELASTIC LIMIT AND COEFFICIENT OF ELASTICITY . 6

5. TENSION ....... 8

6. COMPRESSION . . . . . . 12

7. SHEAR ....... 14

8. FACTORS OF SAFETY AND WORKING STRESSES . 16

CHAPTER II.

ON PIPES, CYLINDERS, AND RIVETED JOINTS.

ART. 9. WATER AND STEAM PIPES .... 20

10. CYLINDERS AND SPHERES .... 22

11. RIVETED JOINTS ...... 24

12. MISCELLANEOUS EXERCISES .... 27

CHAPTER III.

ON CANTILEVERS AND SIMPLE BEAMS.

ART. 13. DEFINITIONS ...... 29

14. REACTIONS OF THE SUPPORTS ... 30

15. EXTERNAL FORCES AND INTERNAL STRESSES . . 32

1 6. THE VERTICAL SHEAR .... 34

17. THE BENDING MOMENT ..... 37

1 8. THEORETICAL AND EXPERIMENTAL LAWS . . 39

19. THE RESISTING SHEAR AND THE RESISTING MOMENT . 40

20. THE TWO FUNDAMENTAL FORMULAS... 41

21. CENTER OF GRAVITY OF CROSS-SECTIONS . . 43

22. MOMENT OF INERTIA OF CROSS-SECTIONS . . 44

23. THE MAXIMUM BENDING MOMENT ... 45

24. THE INVESTIGATION OF BEAMS ... 47



yi CONTENTS.

25. SAFE LOADS FOR BEAMS..... 48

26. DESIGNING OF BEAMS..... 49

27. THE MODULUS OF RUPTURE . . . .51
28. COMPARATIVE STRENGTH ... 52

29. RECTANGULAR BEAMS . . -53
30. WROUGHT IRON I BEAMS . 54

31. WROUGHT IRON DECK BEAMS .... 56

32. CAST IRON BEAMS ... 57

33. GENERAL EQUATION OF THE ELASTIC CURVE . . 59

34. DEFLECTION OF CANTILEVERS ... 61

35. DEFLECTION OF SIMPLE BEAMS .... 63

36. COMPARATIVE DEFLECTION AND STIFFNESS . . 65

37. RELATION BETWEEN DEFLECTION AND STRESS . . 67

38. RECAPITULATION .... 67

39. CANTILEVERS OF UNIFORM STRENGTH . . 68

40. SIMPLE BEAMS OF UNIFORM STRENGTH . . 71

CHAPTER IV.

ON RESTRAINED BEAMS AND ON CONTINUOUS BEAMS.

ART. 41. GENERAL PRINCIPLES 73

42. BEAMS OVERHANGING ONE SUPPORT ... 76

43. BEAMS FIXED AT ONE END AND SUPPORTED AT THE

OTHER ...... 78

44. BEAMS OVERHANGING BOTH SUPPORTS . . 81

45. BEAMS FIXED AT BOTH ENDS . . . .81
46. COMPARISON OF RESTRAINED AND SIMPLE BEAMS . 83

47. PROPERTIES OF CONTINUOUS BEAMS ... 84

48. THE THEOREM OF THREE MOMENTS . . 87

49. CONTINUOUS BEAMS WITH EQUAL SPANS . . 88

50. CONTINUOUS BEAMS WITH UNEQUAL SPANS . . 91

51. REMARKS ON THE THEORY OF FLEXURE . . 92

CHAPTER V.

ON THE COMPRESSION OF COLUMNS.

ART. 52. CROSS-SECTIONS OF COLUMNS ... 96

53. GENERAL PRINCIPLES ... .98
54. EULER'S FORMULAS . . 99

55. HODGKINSON'S FORMULAS..... 102



CONTENTS. Vll

56. TREDGOLD'S FORMULA . . . . 103

57. GORDON'S FORMULA ..... 106

58. RADIUS OF GYRATION OF CROSS-SECTIONS . . 109

59. INVESTIGATION OF COLUMNS . . . .no
60. SAFE LOADS FOR COLUMNS . . . . in

61. DESIGNING OF COLUMNS . . . . . in

62. EXPERIMENTAL RESULTS . . . . 113

63. REMARKS ON THE THEORY OF COLUMNS . . 113

CHAPTER VI.

ON TORSION AND SHAFTS FOR TRANSMITTING POWER.

ART. 64. THE PHENOMENA OF TORSION . . . 118

65. THE FUNDAMENTAL FORMULA FOR TORSION . . 119

66. POLAR MOMENTS OF INERTIA . . . . 120

67. THE CONSTANTS OF TORSION . . . .121
68. SHAFTS FOR TRANSMISSION OF WORK . . 122

69. ROUND SHAFTS . . . . . .123
70. SQUARE SHAFTS . . . . . 124

71. MISCELLANEOUS EXERCISES . . . .125

CHAPTER VII.

ON COMBINED STRESSES.

ART. 72. CASES OF COMBINED STRESSES . . . 126

73. STRESSES DUE TO TEMPERATURE . . .127
74. COMBINED TENSION AND FLEXURE . . . 128

75. COMBINED COMPRESSION AND FLEXURE . . . 129

76. SHEAR COMBINED WITH TENSION OR COMPRESSION 132

77. COMBINED FLEXURE AND TORSION . . .134
78. COMBINED COMPRESSION AND TORSION . . 137

CHAPTER VIII.

APPENDIX AND TABLES.

ART. 79. HORIZONTAL SHEAR IN BEAMS . . . .138
80. MAXIMUM INTERNAL STRESS IN BEAMS . . 141

81. THE FATIGUE OF METALS . . . .143
82. WORKING STRENGTH FOR REPEATED STRESSES . 145

83. THE RESILIENCE OF MATERIALS . . .149
84. TABLES OF CONSTANTS . . . . 150



In scientiis ediscendis prosunt exempla magis quam prsecepta.

NEWTON.



A TEXT-BOOK
ON THE

MECHANICS OF MATERIALS
AND OF

BEAMS, COLUMNS, AND SHAFTS.

CHAPTER I.

ON THE RESISTANCE AND ELASTICITY OF MATERIALS.

ART. i. AVERAGE WEIGHTS.

The principal materials used in engineering constructions are

timber, brick, stone, cast iron, wrought iron and steel. The

following table gives their average unit-weights and average

specific gravities.
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These weights, being mean or average values, should be care-

fully memorized by the student as a basis for more precise knowl-

edge, but it must be noted that they are subject to more or less

variation according to the quality of the material. Brick, for

instance, may weigh as low as 100, or as high as 150 pounds

per cubic foot, according as it is soft or hard pressed. Unless

otherwise stated the above average values will be used in the

examples and problems of this book. In all engineering refer-

ence books are given tables showing the unit-weights for different

qualities of the above six principal materials, and also for copper,

lead, glass, cements and other materials used in construction.

For computing the weights of bars, beams and pieces of

uniform cross-section, the following simple rules will often be

found convenient.

A wrought iron bar one square inch in section and one yard

long weighs ten pounds.
Steel is about two per cent heavier than wrought iron.

Cast iron is about six per cent lighter than wrought iron.

Stone is about one-third the weight of wrought iron.

Brick is about one-fourth the weight of wrought iron.

Timber is about one-twelfth the weight of wrought iron.

For example, consider a bar of wrought iron 1^X3 inches

and 12 feet long. Its cross-section is 4.5 square inches, hence

its weight is 45 X 4 = I 80 pounds. A steel bar of the same

dimensions will weigh about 184 pounds, and a cast iron bar

about 169 pounds.

Problem I . How many square inches in the cross-section of a

wrought iron railroad rail weighing 67 pounds per square yard?
In a steel rail? In a wooden beam ?

Prob. 2. Find the weights of a wooden beam 3 X 4^/2 inches in

section and 1 3 feet long, and of a steel bar one inch in diameter

and 13 feet long.
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ART. 2. STRESSES AND STRAINS.

A '

stress
'

is a force which acts upon a body and tends to

change its shape. If a weight of 400 pounds be suspended by a

rope, the stress on the rope is 400 pounds. This stress produces

an elongation of the rope which increases until the internal mo-

lecular forces or resistances are in equilibrium with the exterior

stress. Stresses are measured in pounds, tons or kilograms. A
'unit-stress' is the amount of stress on a unit of area; this is

expressed either in pounds per square inch, or in kilograms per

square centimeter. Thus, if a rope of two square inches cross-

section sustains a stress of 400 pounds, the unit-stress is 200

pounds per square inch, for the total stress must be regarded as

distributed over the two square inches of cross-section.

A '

strain
'

is the amount of change of shape of a body caused

by an applied stress. For instance, if a load be put on a pillar

its length is shortened and the amount of shortening is a strain.

So in case of the rope, the amount of elongation is a strain.

Strains are generally measured in inches or centimeters. In popu-

lar language the word strain is usually synonymous with stress

and indicates force, and is often so used in technical literature,

but in the strict language of science it means the effect of the

force in deforming the body. The measure of a stress is a weight,

while that of a strain is the length of a line.

Three kinds of simple stress are produced by forces which

tend to change the shape of a body. They are,

Tensile, tending to pull apart, as in a rope.

Compressive, tending to push together, as in a column.

Shearing, tending to cut across, as in punching a plate.

The nouns corresponding to these three adjectives are Tension,

Compression, and Shear. The stresses which occur in beams,

columns, and shafts are of a complex character, but they may

always be resolved into the three kinds of simple stress. The
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first effect of a stress is to cause a deformation, or strain, in the

body. This strain receives a special name according to the kind

of stress which produces it. Thus,

Tension produces a tensile strain, or elongation.

Compression produces a compressive strain, or shortening.

Shear produces a shearing strain, or detrusion.

This change of shape is resisted by the forces between the

molecules of the body, and as soon as this internal resistance

balances the exterior stresses the change of shape ceases and the

body is in equilibrium. But if the stresses be increased far

enough the molecular resistances are finally overcome and the

body breaks or ruptures.

Tension and Compression are similar in character but differ in

regard to direction. A tensile stress upon a bar occurs when two

forces of equal intensity act upon its ends, each in a direction

away from the other. In compression the direction of the forces

is reversed and each acts toward the bar. Evidently a simple

tensile or compressive stress upon a bar is to be regarded as evenly

distributed over the area of its cross-section, so that if P be

the total stress in pounds and A the area of the cross-section

p
in inches, the unit-stress is in pounds per square inch.

A

Shear requires the action of two forces exerted in parallel

planes and very near together, like the forces in a pair of shears,

from which analogy the name is derived. Here also the total

shearing stress P is to be regarded as distributed uniformly over

p
the area A, so that the unit-stress is . And conversely if 5

A
represent the uniform unit-stress the total stress P is A times .

In any case of simple stress acting on a bar let P be the total

stress, A the area over which it is uniformly distributed, and 5"

the unit-stress. Then,

(i) P=AS.
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Also let / be the total strain or deformation produced by the

stress, / the length of the bar, and s the average strain per unit

of length. Then also may be written,

(i)' / = Is.

The laws implied in the statement of these two formulas are

confirmed by experiment, if the stress be not too great.

Unit-stress in general will be denoted by .S",
whether it be ten-

sion, compression, or shear. S
t
will denote tensile unit-stress,

S
c compressive unit-stress, and ^ shearing unit-stress, when it

is necessary to distinguish between them.

Prob. 3. A wrought iron rod I }/2 inches in diameter breaks

under a tension of 67 500 pounds. Find the breaking unit-stress.

Prob. 4. If a wooden bar 1^X3 inches breaks under a tensile

stress of 30 ooo pounds, what stress will break a bar 2X3^
inches ?

ART. 3. EXPERIMENTAL LAWS.

Numerous tests or experiments have been made to ascertain

the strength of materials and the laws that govern stresses and

strains. The resistance of a rope, for instance, may be investi-

gated by suspending it from one end and applying weights to the

other. As the weights are added the rope will be seen to stretch

or elongate, and the amount of this strain may be measured.

When the load is made great enough the rope will break, and

thus its ultimate tensile stress is known. For stone, iron, or steel,

special machines, known as testing machines, have been con-

structed by which the effect of different stresses on different

qualities and forms of materials may be accurately measured.

All experiments, and all experience, agree in establishing the

five following laws, which may be regarded as the axioms of the

science of the strength of materials.

(A) When a small stress is applied to a body a small strain

is produced, and on the removal of the stress the body
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springs back to its original form. For small stresses, then,

materials may be regarded as perfectly elastic.

(E] Under small stresses the strains, or changes of shape,

are approximately directly proportional to the forces

which produce them.

(C) When the stress is great enough a strain is produced
which is partly permanent, that is, the body does not spring

back entirely to its original form on removal of the stress.

The permanent part of the strain is termed a set. In

such cases the strain is not proportional to the stress.

(D) When the stress is greater still the strain rapidly

increases and the body finally ruptures.

() A sudden stress, or shock, is more injurious than a

steady stress or than a stress gradually applied.

The words small and great, used in stating these laws, have,

as will be seen later, very different values and limits for different

kinds of materials and stresses. Let 6" be any unit-stress and s

the unit-strain produced by it. Then according to the law (E]
s

the ratio is a constant for small stresses, but its value for cast
s

iron is about ten times its value for timber.

The 'ultimate strength' of a material under tension, compres-

sion, or shear, is the greatest unit-stress to which it can be sub-

jected. This occurs at or shortly before rupture, and its value is

very different for different materials.

Prob. 5. If a wrought iron bar i inch in diameter and 4 feet

long elongates half an inch under a certain small stress P, how
much will a bar i ^ inches in diameter and 5 feet long elongate

under a stress 2 P ?

ART. 4. ELASTIC LIMIT AND COEFFICIENT OF ELASTICITY.

The 'elastic limit' is that unit-stress at which the permanent
set is first visible and within which the stress is directly propor-

tional to the strain. For stresses less than the elastic limit bodies
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are perfectly elastic, resuming their original form on removal of

the stress. Beyond the elastic limit a permanent alteration

of shape occurs, or, in other words, the elasticity of the material

has been impaired. It is a fundamental rule in all engineering

constructions that the material must never be strained beyond
its elastic limit.

The '

coefficient of elasticity
'

of a bar for tension, compression,

or shearing, is the ratio of the unit-stress to the unit-strain, pro-

vided the elastic limit of the material be not exceeded. Let 5 be

the unit-stress, s the unit-strain and E the coefficient of elasticity.

Then by the definition,

(2) =?.

By law (>) the quantity E is a constant for each material, until

5 reaches the elastic limit. Beyond this limit s increases more

rapidly than 5" and the ratio is no longer constant. Equation (2)

is a fundamental one in the science of the strength of materials.

Since E varies inversely with s, the coefficient of elasticity may
be regarded as a measure of the stiffness of the material. The

stiffer the material the less is the change in length under a given

stress and the greater is E. The values of E for materials have

been determined by experiments with testing machines and their

average values will be given in the following articles. E is

necessarily expressed in the same unit as the unit-stress .S.

Another definition of the coefficient of elasticity is that it is

the unit-stress which would elongate a bar to double its original

length, provided that it could be done without exceeding the

elastic limit. That this is in agreement with (2) may be shown

by regarding a bar of length / which elongates the amount ^

p
under the unit-stress Then (2) becomes,

p_P_ _^_ Pl_

~A^~l~" At'

p
and if X be equal to /, E is the same as the unit stress .

A
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Prob. 6. Find the coefficient of elasticity of a bar of wrought
iron 1 1^ inches in diameter and 16 feet long which elongates ^
inch under a tensile stress of 1 5 ooo pounds.

Prob. 7. If the coefficient of elasticity of cast iron is 1 5 ooo ooo

pounds per square inch, how much will a bar 2X3 inches and 6

feet long stretch under a tension of 5 ooo pounds?
Ans. 0.004 inches.

ART. 5. TENSION.

The phenomena of tension observed when a gradually increas-

ing stress is applied to a bar, are briefly as follows: When the

unit-stress .S is less than the elastic limit S
e ,
the unit-elongation

s is small and proportional to 6". Within this limit the ratio of 6"

to s is the coefficient of elasticity of the material. After passing

the elastic limit the bar rapidly elongates and this is accompanied

by a reduction in area of its cross-section. Finally when 5 reaches

the ultimate tensile strength S,, the bar tears apart. Usually S
f

is the maximum unit-stress on the bar, but in some cases the

unit-stress reaches a maximum shortly before rupture occurs.

The constants of tension for timber, cast iron, wrought iron

and steel are given in the following table. The values are average

ones and are liable to great variations for different grades and

qualities of materials. Brick and stone are not here mentioned,

as they are rarely or never used in tension.

The values of the coefficients of elasticity, elastic limits and

breaking or ultimate strengths are given in pounds per square
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inch of the original cross-section of the bar. The ultimate elon-

gations are in fractional parts of the original length, or they are

the elongations per linear unit
;
these elongations, should be

regarded only as very rough averages, since they are subject to

great variations depending on the shape, size and quality of

the specimen.

The ultimate elongation, together with the reduction in area

of the cross-section, furnishes the means of judging of the duc-

tility of the material. The reduction of area in cast iron and in

many varieties of steel is scarcely perceptible, while in other

varieties of steel and in wrought iron it may be as high as 0.4 of

the original section.

A graphical illustration of the principal phenomena of tension

is given in Fig. i. The unit-stresses are taken as ordinates and
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the unit-elongations as abscissas. For each unit-stress the cor-

responding unit-elongations as found by experiment are laid off

and curves drawn through the points thus determined. For each

of the materials the curve is a straight line from the origin until

the elastic limit is reached, as should be the case according to

the law (B]. The tangent of the angle which this line makes

with the axis of abscissas has evidently the same value as the
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coefficient of elasticity of the material. At the elastic limit a

sudden change in the curve is noticed and the elongation rapidly

increases. The termination of the curve indicates the point of

rupture. These curves show more plainly to the eye than the

values in the table can do the differences in the properties of the

materials. It will be seen that the elastic limit is not a well

defined point, but that its value is more or less uncertain, particu-

larly for cast iron and timber. It should be also clearly under-

stood that particular curves for special cases would often show

great variations from their mean forms as represented in

the diagram.

As a particular example a

tensile test of a wrought iron

bar ^ inches in diameter and

12 inches long made at the

Pencoyd Iron Works will be

considered. In the first col-

umn of the following table are

given the total stresses which

were successively applied, in

the second the stresses per

square inch, in the third the

total elongations, and in the

fourth the elongations or sets

after removal of the stress.

The unit-elongations are

found by dividing those in

the table by 12 inches, the

length of the specimen.

Then from formula (2) the

coefficient of elasticity can be

computed for different values

pf 6" and s. Thus for the second, third and sixth cases,
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for S = 15 ooo, s = - - and E = 36 ooo ooo

for S = 20 ooo, s = - and E = 30 ooo ooo
12

for 5 = 26 ooo, s = -1 -2. and E = 29 700 ooo

The elastic limit was reached at about 33 ooo pounds per

square inch, indicated by the beginning of the set and the rapid

increase of the elongations. The ultimate tensile strength of the

specimen was 51 600 pounds per square inch. The ultimate

unit-elongation was ___ = 0.205 inches per linear inch. It

12

hence appears that this bar of wrought iron was much higher

than the average as regards stiffness, elastic limit and ductility,

and lower than the average in ultimate strength.

The 'working strength' of a material is that unit-stress to

which it may safely be subjected. This should never be greater

than the elastic limit of the material, since if that limit be exceeded

there is a permanent set which impairs the elasticity.

"

In order

to secure an ample margin of safety it is customary to take the

working strength at from one-third to two-thirds the elastic limit

S
c

. The reasons which govern the selection of exact values of

the working strength will be set forth in the following articles.

To investigate the security of a piece subjected to a tension P,

it is necessary first to divide P by the area of the cross-section

and thus determine the working strength. Then a comparison

of this value with the value S
t
for the given material will indicate

whether the applied stress is too great or whether the piece has

a margin of safety. For example, if a tensile stress of 4 500

pounds be applied to a wrought iron bar of ^ inches diameter

the working unit-stress is,

S = = _ = 10 ooo pounds per square inch, nearly.
A, 0.449
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As this is less than one-half the elastic limit of wrought iron the

bar has a good margin of security.

To design a piece to carry a given tension P it is necessary to

assume the kind of material to be used and its allowable working
p

strength 6". Then is the area of the cross-section of the

piece, which may be made of such shape as the circumstances of

the case require. For example, if it be required to design a

wooden bar to carry a tensile stress of 4 500 pounds, the working

strength may be assumed at I ooo pounds per square inch and

the required area is 4.5 square inches, so that the bar may be

.made 2X2^ inches in section.

The elongation of a bar within the elastic limit may readily be

computed by the help of formula (2). For instance, let it be

required to find the elongation of a wooden bar 3X3 inches and

12 feet long under a tensile stress of 9 ooo pounds. From the

formulas (2) and (i),

p S Pi PI
S T A+l ~'-AE

Substituting in this the values = i 500 ooo, A = 9, 1= 144

and P 9 ooo, the probable value of the elongation / is found

to be 0.096 inches.

Prob. 8. Investigate the security of a cast iron bar 2X2 inches

when subject to a tension of 40 ooo pounds.
Prob. 9. Find the size of a round wrought iron rod to safely

carry a tensile stress of 100 ooo pounds.
Prob. 10. Compute the elongation of wooden and of a cast

iron bar, each being 2X3 inches and 16 feet long, under a tensile

stress of 6 ooo pounds.

ART. 6. COMPRESSION.

The phenomena of compression are similar to those of ten-

sion, provided that the length of the specimen does not exceed
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about five times its least diameter. The piece at first shortens

proportionally to the applied stress, but after the elastic limit is

passed the shortening increases more rapidly and is accompanied

by a slight enlargement of the cross-section. When the stress

reaches the ultimate strength of the material the specimen cracks

and ruptures. If the length of the piece exceeds about ten times

its least diameter a sidewise bending or flexure of the specimen

occurs, so that it fails under different circumstances than those of

direct compression. All the values given in this article refer to

specimens whose lengths do not exceed about five times their

least diameter. Longer pieces will be discussed in chapter V
under the head of 'columns.' Owing to the difficulty of making

experiments on short specimens and to an increase of resistance

that arises with the enlargement of the cross-section, the phe-

nomena of compression are not usually so regular as those

of tension.

The constants of compression for short specimens are given in

the following table, the values, like those for tension, being rough

average values liable to much variation in particular cases.

The values of the coefficient of elasticity and the elastic limit for

timber, wrought iron and steel here stated are the same as those for

tension, but the same reliance cannot be placed upon them, owing

to the irregularity of experiments thus far made. There is reason
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to believe that both the elastic limit and the coefficient of elastic-

ity for compression are somewhat greater than for tension.

The investigation of a piece subjected to compression, or the

design of a short piece to be subjected to compression, is effected

by exactly the same methods as for tension. Indeed it is custom-

ary to employ these methods for cases where the length of the

piece is as great as ten times its least diameter.

Prob. 1 1 . Find the height of a brick tower which crushes

under its own weight. Also the height of a stone tower.

Prob. 12. The piston of a steam engine is 18" in diameter and

the piston rod is 2". Find the compressive unit-stress on the

piston rod when the steam pressure behind the piston is 80 pounds

per square inch.

Prob. 13. Compute the amount of shortening in a wrought
iron specimen i inch in diameter and 5 inches long under a load

of 6 ooo pounds.

ART. 7. SHEAR.

Shearing stresses and strains occur whenever two forces, act-

ing like a pair of shears, tend to cut a body between them. When
a plate is punched the ultimate shearing strength of the material

must be overcome over the surface punched. When a bolt is in

tension the applied stress tends to shear off the head and also to

strip or shear the threads in the nut and screw. When a rivet

connects two plates which transmit tension the plates tend to

shear the rivet across.

The ultimate shearing strength of materials is easily determined

by causing rupture under a stress P, and then dividing P by the

area A of the shorn surface. The value of this for timber

is found to be very much smaller along the grain than across the

grain ;
for the first direction it is sometimes called longitudinal

shearing strength and for the second transverse shearing strength.

The same distinction is sometimes made in rolled wrought iron
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plates and bars where the process of manufacture induces a more

or less fibrous structure. The elastic limit and the amount of detru-

sion for shearing are difficult to determine experimentally. The

coefficient of elasticity however has been deduced by means of

certain calculations and experiments on the twisting of shafts,

explained in chapter VI under the head of torsion.

rig-. 2.

The investigation and design of a piece to withstand shearing

stress is made by the means of the equation P= AS, in the same

manner as for tension and compression. For instance, consider the

cylindrical wooden speci-

men shown in Fig. 2, which

has the following dimen-

sions : length ab= 6 inches,

diameter of ends= 4 inches, diameter of central part = 2 inches.

Let this specimen be subjected to a tensile stress in the direction

of its length. This not only tends to tear it apart by tension,

but also to shear off the ends on a surface whose length is ab

and whose diameter is that of the central cylinder. The force P
required to cause this longitudinal shearing is,

P= ASS
=

3.14 X 2 X 6 X 600 = 22 600 pounds,

while the force required to rupture the specimen by tension is,

P=AS
f
=

3.14 X i
2 X 10 000 = 31 400 pounds.

As the former resistance is only about two-thirds that of the latter

the specimen will evidently fail by the shearing off of the ends.
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Prob. 14. A hole ^ inches in diameter is punched in a wrought
iron plate 5/6 inches thick by a pressure on the punch of 78 coo

pounds. What is the ultimate shearing strength of the iron ?

Prob. 15. A wrought iron bolt i ^ inches in diameter has a

head ^ inches long. Find the unit-stress tending to shear off

the head when a tension of 3 coo pounds is applied to the bolt ?

ART. 8. FACTORS OF SAFETY AND WORKING STRESSES.

The factor of safety for a body under stress is the ratio of its

ultimate strength to the actual existing unit-stress. The factor

of safety for a piece to be designed is the ratio of the ultimate

strength to the proper allowable working strength. Thus if S
f

be the ultimate and S the working strength, the factor of safety

f is /= *-. The factor of safety is then always an abstract

number, which indicates the number of times the working stress

may be multiplied before the rupture of the body.

The law () in Art. 3 indicates that working stresses should

be lower for shocks and sudden strains than for steady loads

and varying stresses. In a building the stresses on the walls

are steady, so that the working strength may be taken high and

hence the factor of safety low. In a bridge the stresses in the

several members are more or less varying in character which re-

quires a lower working strength and hence a higher factor of

safety. In a machine subject to shocks the working strength

should be lower still and the factor of safety very high.

Twice as much strain is theoretically caused by a suddenly

applied stress as by one gradually applied. The complete demon-

stration of this proposition belongs to the subject of dynamics
and is of a too complex nature to be here given. It is however

plain that when the load or stress is gradually applied that it

uniformly increases from o to P so that it has an average value

of y? P and performs the work y? PA. in causing a given elonga-
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tion X, while the same work would be performed in the same dis-

tance by the constant force l

/& P. Hence it might be supposed
that the sudden stress P would produce double the strain of the

gradual stress whose average value is ^ P. Accordingly not to

impair the material by inducing a set the working unit-stresses

should be low for bodies subject to shocks.

The following are average values of the allowable factors of

safety commonly employed in American practice. These values

are subject to considerable variation in particular instances, not

only on account of the different qualities and grades of the mate-

rial but also on account of the varying judgment of designers.

They will also vary with the range of varying stress so that differ-

ent parts of a bridge may have very different factors of safety.

The proper allowable working strength of any material for ten-

sion, compression or shearing, may be at once found by dividing

the ultimate strength by the proper factor of safety. Regard should

also be paid to the elastic limit in selecting the working strength,

particularly for materials whose elastic limit is well defined. For

wrought iron and steel the working strength should be well

within the elastic limit, as already indicated in previous articles.

For cast iron, stone, brick and timber it is often difficult to deter-

mine the elastic limit, and experience alone can guide the proper

selection of the working strength. The above factors of safety

indicate indeed the conclusions of experiment and experience

extending over the past hundred years.
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The student should clearly understand that the exact values

given in this and the preceding articles would not be arbitrarily

used in any particular case of design. For instance, if a given

lot of wrought iron is to be used in an engineering structure,

specimens of it should be tested to determine its coefficient of

elasticity, elastic limit, ultimate strength and precentage of elonga-

tion. Then the engineer will decide upon the proper working

strength, being governed by its qualities as shown by the tests,

the character of the stresses that come upon it and the cost of

workmanship.

The two fundamental principles of engineering design are

stability and economy, or in other words :

First, the structure must safely withstand all the stresses

which are to be applied to it.

Second, the structure must be built and maintained at the

lowest possible cost.

The second of these fundamental principles requires that all parts

of the structure should be of equal strength, like the celebrated
" one-hoss shay

"
of the poet. For, if one part is stronger than

another it has an excess of material which might have been spared.

Of course this rule is to be violated if the cost of the labor required

to save the material be greater than that of the material itself.

The factors of safety stated above are supposed to be so

arranged that if different materials be united the stability of all

parts of the structure will be the same, so that if rupture occurs,

everything would break at once. Or, in other words, timber with

a factor of safety 8 has about the same reliability as wrought iron

with a factor of 4 or stone with a factor of 15.

The assignment of working strengths with regard to the elastic

limits of materials is more rational than that by means of the

factors of safety, and in time it may become the more important

and valuable method. But at present the ultimate strengths are

so much better known and so much more definitely determinable
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than the elastic limits that the empirical method of factors of

safety seems the more important, due regard being paid to con-

siderations of stiffness, elastic limit and ductility.

As an example, let it be required to find the proper size of a

wrought iron rod to carry a steady tensile stress of 90 OOO pounds.

In the absence of knowledge regarding the quality of the wrought
iron the ultimate strength S

t
is to be taken as the average value,

5 5 ooo pounds per square inch. Then, for a factor of safety of 4,

the working strength is,

5 = ~ = 13 750 pounds per square inch.

4

The area of cross-section required is hence,

90000 ., -A = 2 6.6 square inches,
13750

which may be supplied by a rod of 2
l~ inches diameter.

Prob. 1 6. Find the diameter in centimeters of a wrought iron

rod to safely carry a steady stress of 20 ooo kilograms. (See
tables in the Appendix.)

Prob. 17. A wooden frame ABC forming an equilateral triangle

consists of pieces 2X2 inches jointed at A, B and C. It is

placed in a vertical plane and supported at B and C so that BC is

horizontal. Find the unit-stress and factors of safety in each of

the three pieces when a load of 4 ooo pounds is applied at A.

Prob. 1 8. Determine the size of a short steel piston rod when

the piston is 15 inches in diameter and the steam pressure 120

pounds per square inch.
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CHAPTER II.

ON PIPES, CYLINDERS, AND RIVETED JOINTS.

ART. 9. WATER AND STEAM PIPES.

The pressure of water or steam in a pipe is exerted in every

direction and tends to tear the pipe apart longitudinally. This is

resisted by the internal tensile stresses of the material. If p be

the pressure per square inch of the water or steam, d the diameter

of the pipe and / its length, the force P which tends to cause

longitudinal rupture is p.ld. This is evident from the fundamental

principle of hydrostatics that the pressure of water in any direc-

tion is equal to the pressure on a plane perpendicular to that

direction, or may be seen by imagining the pipe to be filled with

a solid substance on one side of the diameter which would receive

the pressure p on each square inch of the area Id and transmit it

into the pipe. If t be the thickness of the pipe and 5 the work-

ing tensile strength of the material, the resistance on each side is

U.S. As the resistance must equal the pressure,

pld = 2ttS, or pd 2tS,

which is the formula for discussing pipes under internal pressure.

The unit-pressure p for water may be computed from a given

head h by finding the weight of a column of water one inch square

and h inches high. Or if // be given in feet, the pressure in pounds

per square inch may be computed from p 0.434^.

Water pipes may be made of cast or wrought iron, the former

being more common, while for steam the latter is preferable.
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Wrought iron pipes are sometimes made of plates riveted together

but the discussion of these is reserved for another article. A
water pipe subjected to the shock of water ram needs a high

factor of safety, and in a steam pipe the factors should also be high

owing to shocks liable to occur from condensation and expansion

of the steam. The formula above deduced shows that the thick-

ness of a pipe must increase directly as its diameter, the internal

pressure being constant.

For example, let it be required to find the factor of safety for a

cast iron water pipe of 1 2 inches diameter and ^ inches thickness

under a head of 300 feet. Here p, the pressure per square inch,

equals 130.2 pounds. Then from the formula the unit-stress is,

pd 130 X 12
S= - =-r7~r/~ = i 23O pounds per square inch,

21 2 X /8

and hence the factor of safety is,

20 ooo
f= --- = about ID,

1230

which indicates ample security against the shock of water ram.

Again let it be required to find the proper thickness for a

wrought iron steam pipe of 18 inches diameter to resist a pressure

of 1 20 pounds per square inch. With a factor of safety of 10 the

working strength S is about 5 500 pounds per square inch. Then

from the formula,

pd 120 X 18
t = = - =

- 2 mches '

In order to safely resist the stresses and shocks liable to occur in

handling the pipes, the thickness is often made somewhat greater

than the formula requires.

Prob. 19. What should be the thickness of a cast iron pipe of

1 8 inches diameter under a head of 300 feet?

Prob. 20. A wrought iron pipe is 4.5 inches in internal diameter

and weighs 12.5 pounds per linear foot. What steam pressure

can it carry with a factor of safety of 8 ?
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Prob. 21. What head of water will burst a cast iron pipe of 24
inches diameter and inches thickness ?

ART. 10. CYLINDERS AND SPHERES.

A cylinder subject to the internal pressure of water or steam

tends to fail longitudinally exactly like a pipe. The head of the

cylinder however undergoes a pressure which tends to separate it

from the walls. If d be the diameter of the cylinder and p the

internal pressure per square unit, the total pressure on the head is

^ncP.p. If 6" be the working unit-stress and t the thickness of

the cylinder, the resistance to the pressure is xdt S. Since the

resistance must equal the pressure,

y^TicP.p
=

-ndt.S, or pd = tfS.

By comparing this with the formula of the last article it is seen

that the resistance of a pipe to tranverse rupture is double the

resistance to longitudinal rupture.

A sphere subject to internal pressure tends to rupture around

a great circle, and it is easy to see that the conditions are exactly

the same as for the transverse rupture of a cylinder, or that

pd = 4tS. For very thick spheres and cylinders the formulas of

this and the last article are only approximate.

A cylinder under external pressure is theoretically in a similar

condition to one under internal pressure as long as it remains a

true circle in cross-section. A uniform internal pressure tends to

preserve and maintain the circular form of the cylindrical annulus,

but an external pressure tends at once to increase the slightest

variation from the circle and render it elliptical. The distortion

when once begun rapidly increases and failure occurs by the col-

lapsing of the tube rather than by the crushing of the material.

The flues of a steam boiler are the most common instance of cylin-

ders subjected to external pressure. In the absence of a rational

method of investigating such cases recourse has been had to
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experiment. Tubes of various diameters, lengths, and thicknesses

have been subjected to external pressure until they collapse and

the results have been compared and discussed. The following

for instance are the results of three experiments by Fairbairn on

wrought iron tubes.

From these and other similar experiments it has been concluded

that the collapsing pressure varies directly as some power of the

thickness, arid inversely as the length and diameter of the table.

For wrought iron tubes Wood gives the empirical formula for

the collapsing pressure per square inch,

= 9 600 ooo
Id

The values of p computed from this formula for the above three

experiments are 397, 120 and 409, which agree well with the

observed values.

The proper thickness of a wrought iron tube to resist external

pressure may be readily found from this formula after assuming
a suitable factor of safety. For example, let it be required to find

/when p 1 20 pounds per square inch, 1= 72 inches, d=4
inches and the factor of safety

= 10. Then

9600000

from which with the help of logarithms the value of t is found

to be 0.22 inches.
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Prop. 22. What internal pressure per square inch will burst a

cast iron sphere of 24 inches diameter and ^ inches thickness.

Prob. 23. What external pressure per square inch will collapse

a wrought iron tube 96 inches long, 3 inches diameter and 0.25

inches thickness ?

ART. ii. RIVETED JOINTS.

The strength of riveted joints which are subject to tension

depends upon the shearing strength of the rivets and the tensile

strength of the plates. Whatever be the arrangement all parts of

the joint should have the same degree of stability, so that at the

point of rupture both rivets and plates (like the one-hoss shay)

may simultaneously fail.

A joint subject to tension is always weaker than the parts

which it connects, since a portion of the material is removed to

make room for the rivets. It may be required to arrange a joint

so as to secure either strength or tightness. For a bridge, strength

is mainly needed
;
for a gas holder, tightness is the principal

requisite ;
while for a boiler both these qualities are desirable.

Case I. Lap Joint with single riveting. Let P be the tensile

stress which comes on one rivet, d the diameter of a rivet, t the

thickness of the plates, and a the

pitch of the rivets. Let S
t
be the

unit working strength of the plate

and
S,. that of the rivet, the former

being in tension and the latter

in shear. Then for the plate

P=t(a d} S
t
and for the rivet

xd*.P= '1 S
s

. For equal strength
4

these must be equal, or,



ART. ii. RIVETED JOINTS.

For wrought iron plates and rivets S
t

is about equal to J^, and

therefore,

is the formula for finding the pitch in wrought iron lap riveting.

By punching the hole the section of the plate is reduced from

a.t to (a d) t, so that the ratio of the strength of the joint to

that of the unriveted plate is,

_ a d _
i

a
l

i 4 /

it d
This shows clearly that for a given thickness /, large rivets give

the largest value of r, while small rivets give small values of r.

The smaller the rivet the smaller the pitch and the greater the

loss in strength. For example,

ifd=f, a =1.78? and ^= 0.44,

\{d = 3/. a \o.\t and ;- 0.77,

Hence when strength is required large rivets should be used,

while to give tight joints small rivets must be used with a

sacrifice of strength.

Case II. Lap Joint with double

riveting. In this arrangement twice

as many rivets are used and hence

P=t(a-d}St
= 2 ^~SS

from which, for wrought iron,

a ~T7~ + d and r = -

For this case the same truth holds re

garding strength, thus,

when d= t, a = 2.6t and r= 0.6 1

= 3#, a= 17.3* and r=: 0.83
Fig. 4-

and the loss of strength is much less than in single riveting.
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Case III. Butt Joint with single riveting. For this arrangement
the shear on the rivets comes on two cross-sections, and the

^-^ covers need to be only one-

half as thick as the plates.

\f
VySSS,. 777777^*7^0- Jj. js easy J.Q dcdUCC for

^r rig. 5- , , .

wrought iron,

a=d-\-"- and r =
2t 2.t

which is the same as in the preceding case.

Case IV. Butt Joints with double riveting. Here there are

two rows of rivets and each is in double shear. It is easy to find

for the case of wrought iron,

a= d -f '- and r=

which indicates a large increase in strength over single riveting.

Compression is brought sidewise upon the rivets in all the

above cases by means of the stress Pand tends to cause failure

by crushing. The exact manner in which the compression acts

upon the cylindrical surface of the rivet is not known, but it is

usually supposed to be equivalent to a stress uniformly distrib-

uted over the projection of the surface on a plane through the

axis of the rivet. Thus for single riveting with either lap or

butt joints,

P = /#

and for double riveting,

P = 2tdS
c

.

This compressive or bearing resistance of rivets always needs to

be regarded in actual cases of design. The lap of the plates is

determined by practical considerations rather than by theoretic

formulas.
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For example, let it be required to investigate a single riveted

butt joint consisting of plates 6 inches wide and 0.5 inches thick

with covers 0.25 inches thick and 2 rivets of I inch diameter and

4 inches pitch, when under a tension of 16 ooo pounds. First,

the tensile unit-stress on the plate is,

S,= = 8 ooo pounds per square inch.

4X0.5
Next the shearing unit-stress on the rivets is,

16 ooo 15 = = 10 200 pounds per square inch.
2 X 0.785

Lastly, the bearing compressive unit-stress on the rivets is,

5 = 16 ooo pounds per square inch.
2X i Xo.5

It hence appears that the joint has the greatest resistance against

tension and the least against compression.

Prob. 24. A butt joint with double riveting has plates half an

inch thick and rivets one inch in diameter. Find the pitch of

the rivets and the percentage of strength lost by the joint.

Prob. 25. A boiler is to be formed of wrought iron plates ^6

inches thick united by single lap joints with rivets % inches in

diameter. Find the proper pitch of the rivets. Find the factor

of safety of the boiler if it is 30 inches in diameter and carries a

steam pressure of 100 pounds per square inch above the atmosphere.

ART. 12. MISCELLANEOUS EXERCISES.

It will be profitable to the student to thoroughly perform the

following exercises and to write upon each a detailed report

which should contain all the sketches and computations necessary

to clearly explain the data, the reasoning, and the conclusions.

Exercise I. Visit an establishment where tensile tests are

made. Ascertain the kind of machine employed, its capacity,

the method of applying the stresses, the method of measuring
the stresses, the method of measuring the elongations. Ascer-
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tain the kind of material tested, the reason for testing it, and the

conclusions derived from the tests. Give full data for the tests

on four different specimens, compute the values of coefficient of

elasticity, ultimate strength and ultimate elongation for them,

and state your conclusions.

Exercise 2. Procure a wrought iron bolt and nut. Determine

diameter of bolt, length of head, and length of nut. State the

equation of condition that the head of the nut shall shear off at

the same time the bolt ruptures under tension. Take the shear-

ing strength as half the tensile and compute the length of head

for a given diameter. State why theoretically the length of the

nut should be double that of the head. Compare theory with

practice.

Exercise 3. Go to a boiler shop and witness operations upon a

boiler in process of construction. Ascertain length and diameter

of boiler, thickness, pitch and diameter of rivets, method of

forming holes, method of doing the riveting. Compute the loss

of strength caused by the riveting. Compute the steam pressure

which would cause longitudinal rupture of the plate along a

line of rivets. Ascertain whether the joint is proportioned in

accordance with theory.

Prob. 26. A bar whose cross-section is A is subjected to a

tensile stress P. Prove that a shear exists along any oblique
p

section and that the maximum shearing unit-stress is l/2 .A
Prob. 27. A wrought iron pipe I/Q

inches thick and 20 inches

in diameter is to be subjected to a head of water of 230 feet.

Compute the probable increase in diameter due to the internal

pressure.
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CHAPTER III.

ON SIMPLE BEAMS AND CANTILEVERS.

ART. 13. DEFINITIONS.

Transverse stress, or flexure, occurs when a bar is laid in a

horizontal position upon one or more supports. The weight of

the bar and the loads upon it cause it to bend and induce in it

stresses and strains of a complex nature which, as will be seen

later, may be resolved into those of tension, compression, and

shear. Such a bar is called a beam.

A simple beam is a bar resting upon supports at its ends. A
cantilever beam is a bar on one support in its middle, or the

portion of any beam projecting out of a wall or beyond a support

may be called a cantilever. A continuous beam is a bar resting

upon more than two supports. In this book the word beam,

when used without qualification, includes all kinds, whatever be

the number of the supports or whether the ends be free, supported,

or fixed.

The elastic curve is the curve formed by a beam as it deflects

downward under the action of its own weight and of the loads

upon it. Experience teaches that the amount of this deflection

and curvature is very small. A beam is said to be fixed at one end

when it is so arranged that the tangent to the elastic curve at

that end always remains horizontal. This may be done in prac-

tice by firmly building one end into a wall. A beam fixed at one

end and unsupported at the other is a cantilever.
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The loads on beams are either uniform or concentrated. A
uniform load embraces the weight of the beam itself and any
load evenly spread over it. Uniform loads are estimated by their

intensity per unit of length of the beam, and usually in pounds

per linear foot. The uniform load per linear unit is designated

by w, then wx will represent the load over any distance x. If /

be the length of the beam the total uniform load is wl which

may be represented by W. A concentrated load is a weight

applied at a definite point and is designated by P.

In this chapter cantilevers and simple beams will be principally

discussed, although all the fundamental principles and methods

hold good for restrained and continuous beams as well. Unless

otherwise stated the beams will be regarded as of uniform cross-

section throughout, and in computing their weights the rules of

Art. i will be found of service.

Prob. 28. Find the diameter of a round steel bar which weighs
12 pounds per linear foot.

ART. 14. REACTIONS OF THE SUPPORTS.

The points upon which a beam is supported react upward

against the beam an amount equal to the pressure of the beam

upon them. The beam, being at rest, is a body in equilibrium

under the action of a system of forces which consist of the down-

ward loads and the upward reactions. The loads are usually

given in intensity and position and it is required to find the re-

actions. This is effected by the application of the fundamental

conditions of static equilibrium, which for a system of vertical

forces, are,

2 of all vertical forces = o,

2' of moments of all forces = o.

The first of these conditions says that the sum of all the loads

on the beam is equal to the sum of the reactions. Hence if there

be but one support, the condition gives at once the reaction.
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For two supports the second condition must be used in con-

nection with the first. The center of moments may be taken

anywhere in the plane, but it is more convenient to take it at one

of the supports. For example, consider a single concentrated

load P situated at 4 feet from

the left end of a simple beam

whose span is 13 feet. The

equation of moments, with Rl Tig. 6. "fl,

the center at the left support,

is 13 R2 4 P= o, from which R
9
= P. Again the equa-

tion of moments, with the center at the right support, is

1 3 R t 9 P = o, from which R
T ^P.

As a check it may be

observed that R
T + R

9
= P.

For a uniform load over a simple beam it is evident, without

applying the conditions of equlibrium, that each reaction is one-

half the load.

For an overhanging beam uniformly loaded, as shown in Fig. 7,

let w be the load per linear

unit. For a center of moments i

ym--^
at the right support the sec- '

5 s '

ond condition gives, Ij^ Hff-T- *H

T-> i t f
\

mR ./ wl. -f- wm. = o,
2 2

while with the center at the left support,

R ./ wl wm (I -\- )
= o.

2 2

From these it is easy to deduce the reactions,

wm2 wl wm2

R = h wm 4- -r.

2l '2 2l'

whose sum is equal to the total load wl -\- wm. Here, as in all

cases of uniform load, the lever arms are taken to the centers of

gravity of the portion considered.



32 ON SIMPLE BEAMS AND CANTILEVERS. III.

When there are more than two supports the problem of rind-

ing the reactions from the principles of statics becomes indetermi-

nate, since two conditions of equilibrium are only sufficient to

determine two unknown quantities. By introducing, however,

the elastic properties of the material, the reactions of continuous

beams may be deduced as will be explained in the next chapter.

Prob. 29. Three men carry a stick of timber, one taking hold

at one end and the other two at a common point. Where should

this point be so that each may bear one-third of the weight?
-

'/

Prob. 30. A simple beam weighing 30 pounds per linear foot

is 1 8 feet long. A weight of 700 pounds is placed 5 feet from

the left end and one of 500 pounds at 10 feet from the left end.

Find the reactions due to the total load.

ART. 15. EXTERNAL FORCES AND INTERNAL STRESSES.

The external loads and reactions on a beam maintain their

equilibrium by means of internal stresses which are generated in

it It is required to determine the relations between the external

forces and the internal stresses.

II Consider a beam of any kind

loaded in any manner. Imagine

a plane mn cutting the beam at

any cross-section. In that section

there are acting unknown stresses

of various intensities and direc-

tions. Let the beam be imagined

to be separated into two parts by
the cutting plane and let forces X,

Y, Z, etc., equivalent to the internal

stresses, be applied to the section

as shown in Fig. 8. Then the

equilibrium of each part of the beam will be undisturbed, for each

part will be acted upon by a system of forces in equilibrium.

it
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Hence the following fundamental principle is established,

The internal stresses in any cross-section of a beam hold in

equilibrium the external forces on each side of that section.

This is the most important principle in the theory of flexure.

It applies to all beams, whether the cross-section be uniform or

variable and whatever be the number of the spans or the nature

of the loading.

Thus in the above figure the internal stresses X, Y, Z, etc., hold

in equilibrium the loads and reactions on the left of the section,

and also those on the right. Considering one part only a system

offerees in equilibrium is seen, to which the three necessary and

sufficient conditions of statics apply, namely,

2 of all horizontal components = o,

2 of all vertical components = o,

I of moments of all forces = o.

From these conditions can be deduced three laws concerning

the unknown stresses in any section. Whatever be the intensity

and direction of these stresses, let each be resolved into its hori-

zontal and vertical components. The vertical components will

add together and form a certain resultant force

V which tends to shear off the section from the ^t

one adjacent to it. The horizontal components
will be applied at different points of the cross-

section, some acting in one direction and some

in the other, or in other words, some of the horizontal stresses are

tensile and some compressive. Hence for any section of any beam

the following laws concerning the internal stresses may be stated.

ist. The algebraic sum of the horizontal stresses is zero; or

the sum of the horizontal tensile stresses is equal to the

sum of the horizontal compressive stresses.

2nd. The algebraic sum of the vertical stresses forms a

resultant shear which is equal to the algebraic sum of the

external vertical forces on either side of the section.
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3rd. The algebraic sum of the moments of the internal

stresses is equal to the algebraic sum of the moments of

the external forces on either side of the section.

These three theoretical laws are the foundation of the theory

of the flexure of beams. Their expression may be abbreviated

by introducing the following definitions.

'

Resisting shear
'

is the name given to the algebraic sum of

the vertical stresses in any section, and '

vertical shear
'

is the

name for the algebraic sum of the external vertical forces on the

left of the section.
'

Resisting moment '

is the name given to

the algebraic sum of the moments of the internal horizontal

stresses with reference to a point in the section, and 'bending

moment' is the name for the algebraic sum of the moments of

the external forces on the left of the section with reference to the

same point. Then the three laws may be thus expressed for any
section of any beam,

Sum of tensile stresses = Sum of compressive stresses.

Resisting shear = Vertical shear.

Resisting moment = Bending moment.

The second and third of these equations furnish the fundamental

formulas for investigating beams. They state the relations be-

tween the internal stresses in any section and the external forces

on the left-hand side of that section.

Prob. 31. A wooden beam 12 X 14 inches and 6 feet long is

supported at one end by a force of 560 pounds acting at an angle
of 60 degrees with the vertical, and at the other end by a vertical

force Fand a horizontal force X. Find the values ofX and Y.

ART. 1 6. THE VERTICAL SHEAR.

Vertical Shear is the name given to the algebraic sum of all

external forces on the left of the section considered. Let it be

denoted by V, then for any section,

V= Reactions on left of section minus all loads on left.
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Here upward forces are regarded as positive and downward

forces as negative. V is hence positive or negative accord-

ing as the reaction exceeds or is less than the loads on the left

of the section. To illustrate, consider a simple beam or canti-

lever loaded in any manner and

cut at any section by a vertical i

p Fm . f**

plane mn. Let R be the left and
| J

^ ^
\

R' the right reaction. Let IP H5
~~ ""

denote the sum of all the loads **

on the left of the section and IP
the sum of those on the right. Then, from the definition,

V=R-IP.
Since R + R' = IP + IP' it is clear if R IP= + Fthat

R' IP' = V, or that the resultant of all the external forces

on one side of the section is equal and opposite to the resultant

of those on the other side. They form, in short, a pair of shears

acting very near together on either side of the section and tend-

ing to cause a sliding or detrusion along the section. The value

of the vertical shear for any section of a simple beam or canti-

lever is readily found by the above equation. When R exceeds

IP, the vertical shear V is positive, and the left part of the beam

tends to slide upward relative to the right part. When R is less

than IP, the vertical shear V is negative, and the left part tends

to slide downward relative to the other.

The vertical shear varies greatly in value at different sections

of a beam. Consider first a simple beam / feet long and weigh-

ing w pounds per linear foot. Each reaction is then ^wl.- Pass

a plane at any distance x from the left support, then from the

definition the vertical shear for that section is V= y^wl wx.

Here it is seen that V has its greatest value y^wl when x = o,

that V decreases as x increases, and that V becomes o when

x= y^l. When x is greater than y2 l, V is negative and becomes

when x=l. The equation V= y^wl wx is indeed
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the equation of a straight line, the origin being at the left support,

and may be plotted so that the

r~
-j

1 ordinate at any point of the beam
"^ will represent the vertical shear

for that point, as shown in Fig. 1 1.

Consider again a simple beam

loaded with several weights PIt

P
2 ,
P

3
, etc., and let the weight of the beam itself be neglected.

Here for any point a, between the support and the first load,

V=R\ for b, V=R P
1 \

for

c, V= R P
T

P
2 ,
and so on.

For the case of three loads the

graphical representation of verti-

cal shears is shown in Fig. 12.

For a cantilever beam there is

no reaction at the left end, and for

any section, V= -P. In any case 2P must include both

uniform and concentrated loads if such are upon the beam. For

, a cantilever with two concen-

trated loads and a uniformly

distributed load the vertical

shear for a is V= P
T wx,

and for 6, V= P, P
2 wx,

where x is the distance from

the left-hand end, and the

graphical representation is

shown in Fig. 13. Here Vis a maximum at the wall and then

immediately becomes o.

Prob. 32. A simple beam 12 feet long and weighing 20 pounds

per linear foot has a load of 600 pounds at 2 feet from the left

end. Find the vertical shears at the ends and under the load.

Draw a diagram to show the distribution of vertical shears.

I ,','",
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ART. 17. THE BENDING MOMENT.

Consider again any beam cut at any section by a vertical plane.

The third fundamental condition of static equilibrium (Art. 15)

states that the algebraic sum of the moments of the external

forces on one side of the section is equal to the sum of the resist-

ing moments of the internal stresses in the section. This is true

for any center of moments.

Bending moment is the name given to the algebraic sum of

the moments of the external forces on the left of the section with

reference to a point in that section. Let it be denoted by M.

Then, for a cantilever or simple beam,

M= moment of reaction minus sum of moments of loads.

Here the moment of upward forces is taken as positive and that

of downward forces as negative. M may hence be positive or

negative according as the first or second term is the greater.

For a simple beam of length /, uniformly loaded, each reaction is

y^wl. For any section distant x

from the left support the bending {*
^

-__j

moment isM= ^AwLx wx. lAx, <
' """^

!

or M = y2w (Ix x 2

).
Here

M= o when x= o and also when

x= I, and Mis a maximum when

x = y2 l. The equation, in short,
wl2

is that of a parabola whose maximum ordinate is __ and whose
8

graphical representation is as given in Fig. 14, each ordinate

showing the value of M for the corresponding value of

the abscissa x.

Consider next a simple beam loaded with only three weights

P
If
P

2
and P

3
. Here for any point between the left support and

the first load M= Rx, and for any point between the first and

second loadsM=Rx P^(x a). Each of these expressions is

the equation of a straight line, x being the abscissa and M the

210973
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ordinate, and it is easy to see that the graphical representation of

bending moments is as shown
IE IB rS .

rH 1 ] m Fig- 15-

For a cantilever there is no

reaction at the left end and all

the bending moments are nega-

tive. For instance, for a cantilever

uniformly loaded and having a load at the end the bending mo-

ment is M= Px y2wx z
. Here the variation of moments

may be represented by a parabola, M being o at the free end

and a maximum at the wall.

For any given case the bending moment at any section may
be readily found by using the definition given above. The bend-

ing moment in all cases is a measure of the tendency of the ex-

ternal forces on the left of the section to turn the beam around a

point in that section. This turning is prevented by the internal

resisting moments of the stresses in the section, whose sum

exactly equals the bending moment.

The bending moment is a compound quantity resulting from

the multiplication of a force by a distance. Usually the forces

are expressed in pounds and the distances in feet or inches
;
then

the bending moments are pound-feet or pound-inches. Thus if

a load of $00 pounds be at the middle of a simple beam of 8

feet span, the bending moment under the load is,

M= 250 X 4 = i ooo pound-feet = 12 ooo pound-inches.

Again let a simple beam of 8 feet span be uniformly loaded with

500 pounds. Then the bending moment at the middle is,

M= 250 X 4 250 X 2 = 500 pound-feet = 6 ooo

pound-inches.

Prob. 33. A simple beam of 12 feet span weighs 20 pounds

per linear foot and has a load of 250 pounds at 3 feet from the

left end. Find the bending moments for the quarter points and

for the middle of the beam.
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Prob. 34. A beam 6 feet long and weighing 20 pounds per
foot is placed upon a single support at its center. Compute the

bending moments for sections distant I, 2, 3 and 4 feet from the

left end, and draw a curve to show the distribution of moments

throughout the beam.

ART. 1 8. THEORETICAL AND EXPERIMENTAL LAWS.

From the three necessary conditions of static equilibrium, as

stated in Art. 15, three important theoretical laws regarding in-

ternal stresses were deduced. These alone, however, are not

sufficient for the full investigation of the subject, but recourse

must be had to experience and experiment. Experience teaches

that when a beam deflects one side becomes concave and the

other convex, and it is reasonable to suppose that the horizontal

tensile stresses are on the convex side and the compressive stresses

on the concave. By experiments on beams this is confirmed and

the following laws deduced.

(F) The horizontal fibers on the convex side are elongated
and those on the concave are shortened, while near the

center is a neutral surface which is unchanged in length.

(G) The amount of elongation or compression of any fiber

is directly proportional to its distance from the neutral

axis. Hence by law (B) the horizontal stresses are also

directly proportional to their distances from the neutral

axis, provided the elastic limit of the material be not

exceeded.

The neutral surface passes through the centers of gravity of

the cross-sections. To prove this let a be the area of any ele-

mentary fiber and z its distance from the neutral surface. Let S
be the unit-stress on the fiber most remote from the neutral sur-

face at the distance c. Then by law (G),

== unit-stress at the distance unity,
c

z unit-stress at the distance z,
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therefore az = the total stress on any fiber of area a,

and -F = algebraic sum of all horizontal stresses.

But by the first law of Art. 1 5 this algebraic sum is zero, and

since S and c are constants Saz = o. This however is the con-

dition which makes the line of reference pass through the center

of gravity as shown in elementary mechanics. Therefore the

neutral surface of beams passes

through the centers of gravity

of the cross-section.

The '

neutral axis
'

of a cross-

section is the line in which the

Fiei6.
" neutral surface intersects the

plane of the cross-section. On
the left of Fig. 16 is shown the neutral axis of a cross-section

and on the right a trace of the neutral surface.

Prob. 35. A beam 3 inches wide and 6 inches deep is strained

so that the unit-stress at the remotest fiber of a certain cross-

section is 600 pounds per square inch. Find the sum of all the

tensile stresses on the cross-section.

ART. 19. THE RESISTING SHEAR AND THE RESISTING

MOMENT.

The resisting shear is the algebraic sum of all the vertical

components of the internal stresses at any section of the beam.

IfA be the area of that section and 5^ the shearing unit-stress,

regarded as uniform over the area, then from formula (i),

Resisting shear = AS
S

.

The resisting moment is the algebraic sum of the moments of

the internal horizontal stresses at any section with reference to

a point in that section. To find an expression for its value let 5
be the horizontal unit-stress, tensile or compressive as the case
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may be, upon the fiber most remote from the neutral axis and let

c be the shortest distance from that fiber to said axis. Also

let z be the distance from the neutral axis to any fiber having the

elementary area a. Then by law () and Fig. 16,

= unit-stress at a distance unity,
c

_ z= unit-stress at distance z,
c

2

c

and . = moment of this stress about neutral axis.
c

;. 2 = resisting moment of horizontal stresses.
c

Since 5 and c are constants this expression may be written

laz2
. But 2az2

, being the sum of the products formed by mul-
c

tiplying each elementary area by the square of its distance from

the neutral axis, is the moment of inertia of the cross-section

with reference to that axis and may be denoted by /. Therefore,

SI
Resisting moment = .

Prob. 36. A wooden beam 6X12 inches and five feet long is

supported at one end and kept level by two horizontal forces X
and Y acting at the other end in the median line of the cross-

section, the former at 2 inches from the top and the latter at 2

inches from the base. Find the values of X and Y.

ART. 20. THE Two FUNDAMENTAL FORMULAS.

Consider again any beam loaded in any manner and cut at any
section by a vertical plane. The internal stresses in that section

hold in equilibrium the external forces on the left of the section,

and as shown in Art. 15,

Resisting shear = Vertical shear,

Resisting moment i= Bending moment.
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In the last article values of the resisting shear and the resisting

moments were deduced. These two equations then become,

(3) W=r,
(4)

S
-j-

= M,

which are the fundamental formulas for investigating the strength

of beams. From (3) the average shearing unit-stress 5^ at any
cross-section may be found. From (4) the tensile or compressive

unit-stress 5 upon the remotest fiber at any cross-section may be

computed. It is now seen that transverse stresses are investigated

by resolving them into the simple stresses of tension, compression

and shear. Whether S be tension or compression depends, in

any particular case, upon whether c is measured to the concave

or convex side of the beam.

Fis readily found, as explained in Art. 16, for any given section

of any beam. Usually only its maximum values are needed in

investigations of strength and these will be found at the supports.

M is readily found, as explained in Art. 17, for any given sec-

tion. Usually only its maximum values need be determined and

these are near the middle for a simple beam and at the support

for a cantilever. The values of c and / for any given cross-section

must be computed by the well-known methods explained in ele-

mentary mechanics. Then the unit-stress S will be found from (4).

Experience and experiment teach us that simple beams of uni-

form section break near the middle by the tearing or crushing of

the fibers and very rarely at the supports by shearing. Hence

it is formula (4) that is mainly needed in the practical investigation

of beams. The following example and problem relate to formula

(3) only, while formula (4) will receive detailed discussion in the

subsequent articles.

As an example, consider a wrought iron I beam 1 5 feet long

and weighing 200 pounds per yard, over which roll two locomo-

tive wheels 6 feet apart and each bearing 12 ooo pounds. The
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maximum vertical shear at the left support will evidently occur

when one wheel is at the support. The reaction will then be

500 + 12 ooo -f- ^ X 12 ooo = 19 700 pounds. The greatest

value of Fin the beam is then 19 700 pounds. As the area of

the cross-section is 20 square inches the average shearing unit-

stress is 985 pounds so that the factor of safety is about 50.

Prob. 37. A wooden beam 6X9 inches and 12 feet in span
carries a uniform load of 20 pounds per foot besides its own

weight and also two wagon wheels one weighing 4 ooo pounds
and the other 3 ooo pounds. Find the factor of safety against

shearing.

ART. 21. CENTER OF GRAVITY OF CROSS-SECTIONS.

The fundamental formula (4) contains c, the shortest distance

from the remotest part of the cross-section to a horizontal axis

passing through the center of gravity of that cross-section. The

methods of finding c are explained in books on theoretical

mechanics and will not here be repeated. Its values for some of

the simplest cases are however recorded for reference.

For a rectangle whose height is d, c = y2 d.
For a circle whose diameter is d, c = yz d.
For a triangle whose altitude is d, c = 2

/^d.

For a square with side d having one diagonal

vertical, c = d\/^.

For a I whose depth is d, c = y%d.

For a 1 whose depth is d, thickness of flange t,

width of flange b, and thickness of web /'

t'd-\- t(b t')

For a trapezoid whose depth is d, upper base b,

and lower base V
',

c = b + 2b -
b + V 3-

The student should be prepared to readily apply the principle of

moments to the deduction of the numerical value of c for any

)=&-* -K
p '#.- i

?4/3 *. B>
Q . -

' -v ^ ^ - i. ^ ^
= fA C -
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given cross-section. In nearly all cases the given area may be

divided into rectangles, triangles, and circular areas, whose centers

of gravity are known, so that the statement of the equation for

finding c is very simple.

Prob. 38. Find the value of c for a rail headed beam whose

section is made up of a rectangular flange ^ X 4 inches, a rectan-

gular web y^ X 5 inches, and an elliptical head ^ inches deep
and i YZ inches wide.

ART. 22. MOMENT OF INERTIA OF CROSS-SECTIONS.

The fundamental formula (4) contains 7, the moment of inertia

of the cross-section of the beam with reference to a horizontal

axis passing through the center of gravity of that cross-section.

Methods of determining / are explained in works on elementary

mechanics and will not here be repeated, but the values of some

of the most important cases are recorded for reference.

For a rectangle of base b and depth d, I = .

For a circle of diameter d* I = -__
64

For an ellipse with axes a and b, the latter

vertical,

For a triangle of base b and depth d, I= --
64

I=
For a square with side d having one diag-

onal vertical, 7 = --
12

For a I with base b, depth d, thickness of

flanges t and thickness of web ^,

12

For an 1 with base b, depth d, thickness

of flange t, thickness of web f and

area A, I = gi=tf-/0(rf-fr _ Ac,,
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The value of / for any given section may always be computed

by dividing the figure into parts whose moments of inertia are

known and transferring these to the neutral axis by means of the

familiar rule /
z
= 7 -f- Ah2

,
where 7 is the primitive value, /

r
the

value for any parallel axis, A the area of the figure and h the dis-

tance between the two axes.

Prob. 39. Find the moment of inertia of a triangle with refer-

ence to its base, and also with reference to a parallel axis passing

through its vertex.

Prob. 40. Compute the least moment of inertia of a trapezoid

whose altitude is 3 inches, upper base 2 inches and lower base 5

inches.

ART. 23. THE MAXIMUM BENDING MOMENT.

The fundamental equation (4), namely = M, is true for

any section of any beam, / being the moment of inertia of that

section about its neutral axis, c the vertical distance from that

axis to the remotest fiber, S the tensile or compressive unit-stress

on that fiber, and M the bending moment of all the external

forces on one side of the section. For a beam of constant cross-

section 5" varies directly as M, and the greatest S will be found

where M is a maximum. The place where M has its maximum

value may hence be called the
'

dangerous section,' it being the

section where the horizontal fibers are most highly strained.

For a simple beam uniformly loaded with w pounds per linear

unit the dangerous section is evidently at the middle, and as shown

wl2

in Art. 17, the maximum M is
.

8

For a simple beam loaded with a single weight Pat the distance

/ from the left support, the left reaction is R = P ~, and the

maximum moment is I P)P Ifp be movable the distance
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p will be variable and when the load is at the middle the maxi-

mum M is

4'
For a cantilever the dangerous section is evidently at the wall

and for a uniform load the maximum M is
.

2

For a beam loaded with given weights, either uniform or con-

centrated, it may be shown that the dangerous section is at the

point where the vertical shear passes through zero. To prove

this let P be any concentrated load and p its distance from the

left support, and w the uniform load per linear unit. Then, for

any section distant x from the left support,

M=Rxwx. x_IP(x p\

To find the value of x which renders this a maximum the first

derivative must be put equal to zero
; thus,

^=R- WX-IP= Q .

dx

But R wx 2P is the vertical shear Ffor the section x (see

Art. 16). Therefore the maximum moment occurs at the section

where the vertical shear passes through o. To find the dangerous

section an expression may be written for V in terms of x and the

value of x determined when V changes sign. Thus for a simple

beam uniformly loaded V= %wl wx o, and x= l/2 l. For

concentrated loads it will generally be necessary to find by trial

the point where the shear becomes zero.

Prob. 41. A simple beam 12 feet long weighs 20 pounds per
foot and carries a load of 100 pounds at 4 feet from the left end

and a load of 50 pounds at 7 feet from the left end. Find the

dangerous section.

Prob. 42. A beam 25 feet long, uniformly loaded with w pounds

per linear foot, is supported at the left end and at a point 5 feet

from the right end. Find the two dangerous sections and the

two maximum moments.
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ART. 24.- THE INVESTIGATION OF BEAMS.

The investigation of a beam consists in deducing the greatest

horizontal unit-stress S in the beam from the fundamental formula

(4). This may be written,

s= Mc

First, from the given dimensions find, by Art. 21, the value of c

and by Art. 22 the value of 7. Then by Art. 23 determine the

value of maximum M. From (4) the value of ^ is now known.

Usually c and / are taken in inches, andM in pound-inches ;
then

the value of 6" will be in pounds per square inch.

The value of 5 will be tension or compression according as

the remotest fiber lies on the concave or convex side of the beam.

If S' be the unit-stress on the opposite side of the beam and

c' the distance from the neutral axis, then from law (G\

?=?_ and S'=S
c c' c

If 5 be tension, S 1
will be compression, and vice versa. Some-

times it is necessary to compute S' as well as S in order to

thoroughly investigate the stability of the beam. By comparing
the values of S and S' with the proper working unit-stresses for

the given materials (see Art. 8) the degree of security of the beam

may be inferred.

As an example consider a wrought iron I beam whose depth

is 12 inches, width of flange 4.5 inches, thickness of flange I inch

and thickness of web 0.78 inches. It is supported at its ends

forming a span of 12 feet, and carries two loads each of 10 qoo

pounds one at the middle and the other at one foot from the

right end.

By Art. 14, ^=6193 pounds.

By Art. 21, c= 6 inches.

By Art. 22, 7 338 inches4
.

By Art. 23, x= 6 feet for dangerous section.

By Art. 23, max. M= 36 078 X 12 pound-inches.
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Then from formula (4) the unit-stress at the dangerous section is,

5= 36 078 X_I2_X_6 = 7 7QO pounds per square inch

338

This is the compressive unit-stress on the upper fiber and also

the tensile unit-stress on the lower fiber, and being only about

one-third of the elastic limit for wrought iron and about one-

seventh of the ultimate strength it appears that the beam is en-

tirely safe. It will usually be best in solving problems to insert

all the numerical values at first in the formula and thus obtain

the benefit of cancellation.

A short beam heavily loaded also needs to be investigated for

the shearing stress at the supports in the manner mentioned in

Art. 20, but in ordinary cases there is little danger of failure

from this cause.

Prob. 43. Find the factor of safety of a simple wooden beam

2X4 inches when loaded at the middle with i ooo pounds.
Prob. 44. A piece of scantling 2 inches square and 10 feet long

is hung horizontally by a rope at each end and three painters

stand upon it. Is it safe ?

Prob. 45. A wrought iron bar one inch in diameter and two

feet long is supported at its middle and a load of 500 pounds

hung upon each end of it. Find its- factor of safety.

ART. 25. SAFE LOADS FOR BEAMS.

The proper load for a beam should not make the value of 6" at

the dangerous section greater than the allowable unit-stress. This

allowable unit-stress or working strength is to be assumed accord-

ing to the circumstances of the case by first selecting a suitable

factor of safety from Art. 8 and dividing the ultimate strength of

the material by it, the least ultimate strength whether tensile or

compressive being taken. For any given beam the quantities /

and c are known. Then, by the general formula (4), the bending

moment M may be expressed in terms of the unknown loads on
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the beam, and thus those loads be found. The sign of the bend-

ing moment should not be used in (4), since that sign merely de-

notes whether the upper fiber of the beam is in tension or com-

pression, or indicates the direction in which the external forces

tend to bend it.

As an example, consider a cantilever projecting from a wall

whose length is 6 feet, breadth 2 inches, depth 3 inches and which

is loaded uniformly with w pounds per linear foot. It is required

to find the value of w so that vS may be 800 pounds per square

inch. Here we have c = i finches, /=, and M= 36 X 6w.

Then from (4),

800 X 54
210 zu= -, ;

' whence w= n pounds.
I# X 12

Since a wooden beam 2X3 inches weighs about 2 pounds per

linear foot, the safe load in this case will be about 9 pounds

per foot.

Prob. 46. A wooden beam 8X9 inches and of 14 feet span
carries a load, including its own weight, of w pounds per linear

foot. Find the value of w for a factor of safety of 10.

Prob. 47. A cast iron beam one inch square and of 4 feet span
carries a load P at the middle. Find P so that the greatest hori-

zontal unit-stress at the dangerous section shall be 3 ooo pounds

per square inch.

ART. 26. DESIGNING OF BEAMS.

When a beam is to be designed the loads to which it is to be

subjected are known, as also is its length. Thus the maximum

bending moment may be found. The allowable working strength

5 is assumed in accordance with engineering practice. Then

formula (4) may be written,

c S
and the numerical value of the second member be found. The
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dimensions to be chosen for the beam must then have a value of

equal to this numerical value, and these in general are deter-

mined tentatively, certain proportions being first assumed. The

selection of the proper proportions and shapes of beams for differ-

ent cases requires much judgment and experience. But what-

ever forms be selected they must in each case be such as to satisfy

the above equation.

For instance, a wrought iron beam of 4 feet span is required to

carry 500 pounds at the middle. Here, by Art. 23, the value of

maximum Mis 6 ooo pound-inches. From Art. 8 the value of 5"

for a variable load is about 10 ooo pounds per square inch. Then,
7 = 6000 =o6inches3 .

c 10 ooo

An infinite number of cross-sections may be selected with this

value of .
If the beam is to be round and of diameter d, it is

known that c.= l/2d and 7=^. Hence,
64

=0.6, whence d= 1.83 inches.

32
If the cross-section is to be rectangular, the dimensions I X 2

inches would give the value of as ^3 which would be a little

too large, while I X i^ would give as about 0.53 which would

be too small.

Sometimes cross-sections not symmetrical to the neutral axis are

designed, particularly for cast iron where the compressive unit-

stress may be taken greater than the tensile. In no case of design

however should the dimensions be so selected as to render the

unit-stress on either side greater than the elastic limit of the

material.

Prob. 48. A rectangular beam of 14 feet span carries a load of

i ooo pounds at its center. If its width is 4 inches find its depth

for a factor of safety of 10.
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Prob. 49. Design a hollow circular wrought iron beam for a

span of 12 feet to carry a load of 320 pounds per linear foot.

ART. 27. THE MODULUS OF RUPTURE.

The fundamental formula (4) is only true for stresses within the

elastic limit, since beyond that limit the law (G) does not hold,

and the horizontal unit-stresses are no

longer proportional to their distances

from the neutral axis, but increase in a

more rapid ratio as shown in the

sketch. It is however very customary

to apply (4) to the rupture of beams. Figiir.

The 'modulus of rupture
'

is the value of S deduced from for-

mula (4) when the beam is loaded up to the breaking point. It is

always found by experiment that the modulus of rupture does

not agree with either the ultimate tensile or compressive strength

of the material but is intermediate between them. If formula (4)

were valid beyond the elastic limit, the value of .S for rupture

would agree with the least ultimate strength, with tension in the

case of cast iron and with compression in the case of timber. The

modulus of rupture is denoted by Sr.

The average values of the modulus rupture are given in the

following table, which also contains the average ultimate tensile

and compressive strengths, previously stated in Arts. 5 and 6, all

in pounds per square inch.
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By the use of the experimental values of the modulus of rup-

ture it is easy with the help of formula (4) to determine what load

will cause the rupture of a given beam, or what must be its length

or size in order that it may rupture under assigned loads.

Prob. 50. A wooden beam 4X6 inches and 9 feet span has a

load P at the middle. Find the value of P to break it.

Prob. 51. A wrought iron cantilever 2 inches square projects

from a wall. Find its length in order to rupture under its own

weight.
Prob. 52. What must be the size of a square wooden beam of

8 feet span in order to break under its own weight ?

ART. 28. COMPARATIVE STRENGTHS.

The strength of a beam is measured by the load that it can

carry. Let it be required to determine the relative strength of

the four following cases.

1st, A cantilever loaded at the end with W,

2nd, A cantilever uniformly loaded with W,

3rd, A simple beam loaded at the middle with W,

4th, A simple beam loaded uniformly with W.

Let / be the length in each case. Then, from Art. 23 and

formula (4),

SI
Ic

'

SI
l

~k'
SI

I
7

Therefore the comparative strengths of the four cases are as the

numbers i, 2, 4, 8. That is, if four such beams be of equal size

and length and of the same material, the 2nd is twice as strong
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as the ist, the 3rd four times as strong, and the 4th eight times

as strong.

These equations also show that the strength of a beam varies

directly as S, inversely as the length /, and directly as -. They

also prove that a uniform load produces only one-half as much

stress as an equivalent concentrated load. These general laws of

the strength of beams are very important.

Prob. 53. Compare the strength of a rectangular beam 2 inches

wide and 4 inches deep with that of a circular beam 3 inches in

diameter.

Prob. 54. Compare the strength of a wooden beam 4X6 inches

and 10 feet span with that of a wrought iron beam I X 2 inches

and 7 feet span.

ART. 29. RECTANGULAR BEAMS.

For a beam of rectangular cross-section let b be the breadth

and d the depth. Then the formula (4) becomes,

For cantilevers and common beams let W be the load, either

uniform or concentrated as in Art. 28, then,

... Sbd*w= n
-6T'

where n is either I, 2, 4 or 8, as the case may be.

This equation shows the important laws that the strength of a

rectangular beam varies directly as its breadth, directly as the

square of its depth and inversely as its length. The reason
xwhy

rectangular beams are put with the greatest dimension vertical is

now apparent.

To find the strongest rectangular beam that can be cut from a

circular log of given diameter D, it is necessary to make bd* a

maximum. Or the value of b is to be found which makes b(D* *)
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a maximum. By placing the first derivative equal to zero this

value of b is readily found. Thus,

b= D\/y-, and d=D\/%.
Hence very nearly, b: d : : 5 / 7. From this it is evident that the

way to lay off the strongest beam on the end of

a circular log is to divide the diameter into three

equal parts, from the points of division draw

perpendiculars to the circumference, and then join

the points of intersection with the ends of the

ng.a diameter, as shown in the figure.

Prob. 55. Compare the strength of a cylindrical beam with that

of the strongest rectangular beam that can be cut from it.

ART. 30. WROUGHT IRON I BEAMS.

Wrought iron I beams are rolled at present in about thirteen

sizes or different depths. Of each size there

is a light and a heavy weight, and by giving

special orders weights intermediate in value

may be obtained. They are extensively used

in engineering and architecture. The follow-

ing table gives the sizes, weights and moments

of inertia of those manufactured by Carnegie

Bros. & Co., Pittsburgh, Pa. The sizes of

different manufacturers agree as to depth, but

vary slightly with regard to proportions of

cross-section, weights per foot, and moments

of inertia. Fig. 19 shows the proportions of the light and

heavy 6 inch beams.

The moments of inertia in the fourth column of the table are

taken about an axis perpendicular to the web at the center, this

being the neutral axis of the cross-section when used as a beam.

The values of /' are for. use in Chapter V. In investigating the

strength of a given I beam the value of- is taken from the table
c

Tig. 19.



ART. 30. WROUGHT IRON I BEAMS. 55

and 5 is computed from formula (4). In designing an I beam

for a given span and loads the value of - is found by (4) from

the data and then from the table that I is selected which has the

nearest or next highest corresponding value.

For example, let it be required to determine which I should

be selected for a floor loaded with 150 pounds per square foot,

the beams to be of 20 feet span and spaced 1 2 feet apart between

centers, and the maximum unit-stress S to be 12 ooo pounds per

square inch. Here the total uniform load on the beam is
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12 X 2O X 150= 36 ooo pounds= W. From formula (4),

I_M _ 36 ooo X 20 X 12

c S
= 90.8X 12 ooo

and hence from the table, the light 15 inch I should be selected.

Steel I beams and the other shapes are now beginning to be

used, and will undoubtedly be very common in a few years.

Prob. 56. A heavy 15 inch I beam of 12 feet span sustains a

uniformly distributed load of 41 net tons. Find its factor of safety.

Also the factor of safety for a 24 feet span under the same load.

Prob. 57. A floor, which is to sustain a uniform load of 175

pounds per square foot, is to be supported by heavy 10 inch I

beams of 1 5 feet span. Find their proper distance apart from

center to center so that the maximum fiber stress may be 1 2 ooo

pounds per square inch.

Prob. 58. What I should be selected for this floor if the beams

are to be spaced 3 feet 7 inches from center to center.

ART. 31. WROUGHT IRON DECK BEAMS.

Deck beams are used in the construction of buildings, and are

of a section such as shown in figure 20.O The heads are formed with arcs of circles

but may be taken as elliptical in computing

the values of c and /. The following table

gives dimensions of deck beams manufac-

tured by Carnegie Bros. & Co.

By means of formula (4) a given deck

beam may be investigated or safe loads be

determined for it, or one may be selected for

a given load and span. Sometimes T irons

are used instead of deck beams
;
the values

of c and / for these may be computed with

sufficient accuracy by regarding the web and flanges as rect-

angular as in Arts. 21 and 22.
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Prob. 59. A heavy 7" deck beam is loaded uniformly with

50 ooo pounds. Find its factor of safety for a span of 22 feet

ART. 32. CAST IRON BEAMS.

Wrought iron beams are usually made with equal flanges since

the resistance of wrought iron is about the same for both tension

and compression. For cast iron, however, the flange under ten-

sion should be larger than that under compression, since the

tensile resistance of the material is much less than its compressive

resistance. Let S' be the unit-stress on the remotest fiber on the

tensile side and 5 that on the compressive side, at the distances

c' and c respectively from the neutral axis. Then, from law (G),

c- =?
c' S 1

'

Now if the working values of 5" and S' can be selected the ratio

of c to c' is known and a cross-section can be designed, but it is

difficult to assign these proper values on account of our lack of

knowledge regarding the elastic limits of cast iron.

According to Hodgkinson's investigations the following are

dimensions for a cast iron beam of equal ultimate strength.

Thickness of web =
t,

Depth of beam =
13.5*,
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Width of tensile flange
=

I2/,

Thickness of tensile flange
=

2t,

Width of compressive flange
=

$t,

Thickness of compressive flange
=

i%t,
Value of c gf,

Value of 7 =
923/4.

Here the unit-stress in the tensile flange is one-half that in the

the compressive flange. Although these proportions may be

such as to allow the simultaneous rupture of the flanges, yet it

does not necessarily follow that they are the best proportions for

ordinary working stresses, since the factors of safety in the flanges

as computed by the use of formula (4) would be quite different.

The proper relative proportions of the flanges of cast iron beams

for safe working stresses have never been definitely established,

and on account of the extensive use of wrought iron the question

is not now so important as formerly.

As an illustration of the application of formula (4) let it be re-

quired to determine the total uniform load W for a cast iron 1

beam of 14 feet span, so that the factor of safety may be 6, the

depth of the beam being 1 8 inches, the width of the flange 1 2

inches, the thickness of the stem i inch, and the thickness of the

flange i^ inches. First, from Art. 21 the value of c is found to

be 12.63 inches, and that of c' to be 5.37 inches. From Art. 22

the value of / is computed to be I 031 inches4
. From Art. 23

the bending moment is,

M= = 21 W7
pound-inches.

8

Now with a factor of safety of 6 the working strength 5 on the

the remotest fiber of the stem at the dangerous section is to be

2 pounds per square inch. Hence from formula (4),
6

21W = 90QQQX 1031, whence w =
6 X 12.63

Again with a factor of safety of 6 the working strength 5' on
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the remotest fiber of the flange at the dangerous section is to be

pounds per square inch. Hence from the formula,
6

2 1 W= 20QO X l

l\ whence W= 30 400 pounds.

The total uniform load on the beam should hence not exceed

30 400 pounds. Under this load the factor of safety on the tensile

side is 6, while on the compressive side it is nearly 12.

Prob. 60. A cast iron beam in the form of a channel, or hollow

half rectangle, is often used in buildings. Suppose the thickness

to be uniformly one inch, the base 8 inches, the height 6 inches

and the span 1 2 feet. Find the values of 5 and S' at the danger-
ous section under a uniform load of 1 5 net tons.

ART. 33. GENERAL EQUATION OF THE ELASTIC CURVE.

When a beam bends under the action of exterior forces the

curve assumed by its neutral surface is called the elastic curve.

It is required to deduce a general expression for its equation.

Let pu in the figure be any normal section in any beam. Let

mn be any short length dl,

and draw vmq parallel to the

normal section through n.

Previous to the bending the

sections pu and st were par-

allel
;
now they intersect at o

the center of curvature. Pre-

vious to the bending ps was

equal to dl, now it has

elongated the amount pq or
Fig2i

L The distance mp is the

quantity c. The elongation ), is produced by the unit-stress 5,

and from (2) its value is,

<-
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where E is the coefficient of elasticity of the material of the beam.

From the similar figures omn and mpq,
om = mp

^ or * = -,

mn pq
'

dl

where R is the radius of curvature om. Inserting in this the

above value of /, it becomes,

S _E
~c~ R

'

But from the fundamental formula (4),

5 M
c
~ :

/'

and hence, by comparison,
ElM = _..

This is the formula which gives the relation between the bending

moment of the exterior forces and the radius of curvature at

any section.

Now, in works on the differential calculus, the following value

is deduced for the radius of curvature of any plane curve whose

abscissa is ;r, ordinate y and length /, namely,

dx.d*y

Hence the most general equation of the elastic curve is,

dl*
=

7

dx.d*y
= ~~

M'
which applies to the flexure of all bodies governed by the laws

of Arts. 3 and 18.

In discussing a beam the axis of x is taken as horizontal and

that of y as vertical. Experience teaches us that the length of a

small part of a bent beam does not materially differ from that of

its horizontal projection. Hence dl may be placed equal to dx

for all beams, and the above equation reduces to the form,

d*y M
( }~ ~ ~ '
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This is the general equation of the elastic curve, applicable to

all beams whatever be their shapes, loads or number of spans.

M is the bending moment of the external forces for any section

whose abscissa is x, and whose moment of inertia with respect

to the neutral axis is /. Unless otherwise stated /will be regarded

as constant, that is, the cross-section of the beam is constant

throughout its length.

To obtain the particular equation of the elastic curve for any

special case, it is first necessary to express M as a function of x

and then integrate the general equation twice. The ordinate y
will then be known for any value of x. It should however be

borne in mind that formula (5), like formula (4), is only true

when the unit-stress S is less than the elastic limit of the material.

Prob. 61. A wooden beam y2 inch wide, ^ inch deep, and 3

feet span carries a load of 14 pounds at the middle. Find the

radius of curvature for the middle, quarter points and ends.

ART. 34. DEFLECTION OF CANTILEVERS.

Case I. A load at the free end. Take the origin of co-ordi-

nates at the free end, and as

in Fig. 22, let m be any point

of the elastic curve whose

abscissa is x and ordinate y.

For this point the bending
moment M is Px and the general formula (5) becomes,

By integration,

dy Px*
EI

dx
=
--T~

But is the tangent of the angle which the tangent to the
dx

elastic curve at m makes with the axis of x and as the beam is

fixed at the wall the value of is o when x equals /. Hence
dx
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C = y^Pl
2

,
and the first differential equation is,

EJ dy __ PI2

__ Px*

dx 2 2

The second integration now gives,

Pl*x Px*
Ely =---+?.

But y = o, when x = o. Hence O = o, and

6Efy = P (3/
2* *3),

which is the equation of the elastic curve for a cantilever of length

/ with a load P at the free end. If x = I the value of y will be

the maximum deflection, which may be represented by J. Then,

and for any point of the beam the deflection is J y.

Case II. A cantilever uni-

formly loaded. Let the origin

be taken at the free end as be-

fore. Let the load per linear

rig>-M>
unit be w. Then for any sec-

tion M = y^wx* and formula (5) becomes,

~dx~2
=

~2~'

Integrate this, determine the constant of integration by the con-

sideration that -^ = o when x = /, and then,
dx

dx

Intergrate again, and after determining the constant, the equation

of the elastic curve is,

which is a biquadratic parabola. For x= /, y = J the maxi-

mum deflection, whose value is,

"=-w-
where W is the total uniform load on the cantilever.



ART. 35. DEFLECTION OF SIMPLE BEAMS. 63

Case III. A cantilever uniformly loaded with W and also

carrying a load P at the free end. Here it is easy to show that

the maximum deflection is,

_

In all these cases' the maximum unit-stress J> produced by the

loads must not exceed the elastic limit of the material.

Prob. 62. Compute the deflection of a wooden cantilever,

2X2 inches and 6 feet span, caused by a load of 100 pounds at

the end. Also of a cast iron cantilever of the same dimensions.

Prob. 63. In order to find the coefficient of elasticity of a cast

iron bar 2 inches wide, 4 inches deep and 6 feet long, it was bal-

anced upon a support and a weight of 4 ooo pounds hung at

each end, when the deflection of the ends was observed to be

0.401 inches. Compute the value of E.

ART. 35. DEFLECTION OF SIMPLE BEAMS.

Case I. A single load P at the middle. Let the origin be

taken at the left support.

For any section between ^t -x

the left support and the

middle the bending moment

M is y2 Px. Then the general formula (5) becomes,

EI& = *r.
dx* 2

Integrate this and find the constant by the fact that o
dx

when x = y^. Then integrate again and find the constant by
the fact that y = o when x o. Thus,

is the equation of elastic curve between the left hand support and

the load. For the greatest deflection make x = }^l, then,
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This result may also be obtained by regarding the beam as a can-

tilever fixed at the load and bent upward by the reaction.

Case II. A uniform load. Let w be the load per linear unit,

then the formula (5) becomes,

wlx wx*

Integrate this twice, find the constants as in the preceding para-

graph, and the equation of the elastic curve is,

2^Efy = w( x* + 2/^3 frx),

from which the maximum deflection is,

=
384 384^7

Case III. A load P at any point. Here it is necessary first to

consider that there are two elastic curves, one on each side of the

load, which have distinct

& ---------- T>^^ equations, but which have a

common tangent and ordi-

Fig:25-

nate under the load. As in

Fig. 25, let the load be placed at a distance k from the left sup-

port. Then the left reaction is P .
From the general

formula (5), with the origin at the left support, the equations are,

On the left of the load,

dzv

(a) ! = Rx,

(b) EI^
= y2Rx*+ C^

(c) Ely =\Rx* +>+.
On the right of the load,

(a)' EI= Rx - P
(
x-k\

(c}
r

Ely = \Rx* j
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To determine the constants consider in (c) that y = o when

x = o and hence that C
3
= o. Also in

(<:)', y = o when x = I

and hence C
4
is known in te'rms of./?, Pand C

2
. Since the curves

have a common tangent under the load, (b)
=

(>)' when x = k,

and since they have a common ordinate at that point (c)
=

(c)
f

when x = k. Or,

^Rk* + C^ = ^Rk* ^Pk* + Pfc + C
9 ,

From these two equations the values of C
t
and 7

2
are found.

Then the equation of the elastic curve on the left of the load is,

6EIy = Rx* + Pk($k 2l -) x.

To find the maximum deflection, insert in this the value of R and

find the value of x for which becomes o. If k be greater
dx

than y2 l this value of x inserted in the above equation gives the

maximum value of y. If k be less than y2 l the maximum deflec-

tion is on the other side of the load. For instance, if k = ^/,

the equation of the elastic curve on the left of the load is,

This is a maximum when x = o.56/, which is the point of greatest

deflection.

Prob. 64. In order to find the coefficient of elasticity of Quercus
alba a bar 4 centimeters square and one meter long was supported
at the ends and loaded in the middle with weights of 50 and 100

kilograms when the corresponding deflections were found to be

6.6 and 13.0 millimeters. Show that the mean value of was

74 500 kilos per square centimeter.

ART. 36. COMPARATIVE DEFLECTION AND STIFFNESS.

From the two preceding articles the following values of the

maximum deflections may now be written and their comparison
will show the relative stiffness of the different cases.
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For a cantilever loaded at the end with W, j ----

For a cantilever uniformly loaded with W, A = -. -------

Wfi
For a simple beam loaded at middle with W, J = .

__

For a simple beam uniformly loaded with W, J = -5_.__
The relative deflections of these four cases are hence as the num-

bers
i,|. ^ and^.

These equations also show that the deflections vary directly

as the load, directly as the cube of the length and inversely as

E and /. For a rectangular beam /= , and hence the de-
12

flection of a rectangular beam is inversely as its breadth and in-

versely as the cube of its depth.

The stiffness of a beam is indicated by the load that it can

carry with a given deflection. From the above it is seen that the

value of the load is,

where m has the value 3, 8, 48, or as the case may be. There-

fore, the stiffness of a beam varies directly as E, directly as / and

inversely as the cube of its length, and the relative stiffness of

the above four cases is as the numbers I, 2-> 16 and 25-. From
this it appears that the laws of stiffness are very different from

those of strength. (Art. 28.)

Prob. 65. Compare the strength and stiffness of a joint 3X8
inches when laid with flat side vertical and when laid with narrow

side vertical.

Prob. 66. Find the thickness of a white pine plank of 8 feet

span required not to*bend more than
^-th

of its length under a

head of water of 20 feet.
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ART. 37. RELATION BETWEEN DEFLECTION AND STRESS.

Let the four cases discussed in Arts. 28 and 36 be again con-

sidered. For the strength,

57= n

For the stiffness,

W = n y- where n = I, 2, 4 or

FTAW=
-j->

where m = 3> 8, 48 or 76*.

By equating these values of W the relation between J and

obtained, thus,

= , = .

nl* mcE
These equations, like the general formula (4) and (5), are only

valid when 5 is less than the elastic limit of the materials.

This also shows that the maximum deflection J varies as

I2

- for beams of the same material under the same unit-stress S.
c

Prob. 67. Find the deflection of a wrought iron I heavy 10

inch beam of 9 feet span when strained by a uniform load up to

the elastic limit.

Prob. 68. Compare the deflections of a wrought iron and

wooden beam when strained to the elastic limit by a single load

at the middle.

ART. 38. RECAPITULATION.

Let the length of the cantilever or beam be /, the load upon it,

whether concentrated or uniform, be W, the moment of inertia of

the constant cross-section about a horizontal axis through its cen-

ter of gravity be /, the shortest distance from the remotest fiber

to said axis be c, the unit-stress at the elastic limit be S
e ,
and the

coefficient of elasticity be E. Then, from the preceding articles,

the following table may be compiled, which exhibits the most

important results relating to both absolute and relative strength

and stiffness.
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Here the signs of the maximum shears and moments are omitted

as only their absolute values are needed in computations. Evi-

dently the moments are negative for the first and second cases,

and positive for the third and fourth, the direction of the curva-

ture being different.

Prob. 69. A wooden beam of breadth b, depth d and span x is

loaded with P at the middle. Find the value of x so that rupture

may occur under the load. Find also the value of x so that

rupture may occur by shearing at the supports.

ART. 39. CANTILEVERS OF CONSTANT STRENGTH.

All cases thus far discussed have been of constant cross-section

throughout their entire length. But in the general formula (4)

the unit-stress 6" is proportional to the bending moment M, and

hence varies throughout the beam in the same way as the mo-

ments vary. Hence some parts of the beam are but slightly

strained in comparison with the dangerous section.

A beam of uniform strength is one so shaped that the unit-

stress ^ is the same in all fibers at the upper and lower surfaces.

Hence to ascertain the form of such a beam the unit-stress 5 in
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(4) must be taken as constant and - be made to vary with M.

The discussion will be given only for the most important practi-

cal cases, namely those where the sections are rectangular. For

these - equals , and formula (4) becomes,
c 6

6
- M.

In this bd 2 must vary with Mfor forms of uniform strength.

For a cantilever with a load P at the end, M= Px and the

equation becomes \Sbd
2 = Px, in which P and 5 are constant.

If the breadth be taken as constant, d*

varies with x and the profile is that of a

parabola whose vertex is at the load, as

shown in Fig. 26. The equation of the

parabola is d 2 = x from which d may
Sb

Elevation.

be found for given values of x. The walk-

ing beam of an engine is often made approximately of this shape.

If the depth of the cantilever be constant

then b varies directly as x and hence the

plan of the cantilever is a triangle as shown

in Fig. 27. The value of b may be found

from the expression b = 6Px
Plan.

Fig. 17.

For a cantilever uniformly loaded with

w per linear unit M y2wx*, and the equation becomes

jrSbd*
= y^wx*, in which w and 6" are

known. If the breadth be taken as con-

stant then d varies as x and the elevation is

a triangle, as in Fig. 28, whose depth at

Elevation.

any point is d =
x-\l~.

If however the

depth be taken constant, then b = ^L
Sd*

Fig 28.

which is the equa-
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tion of a parabola whose vertex is at the

free end of the cantilever and whose axis is

perpendicular to it. Or the equation may
be satisfied

. by two parabolas as shown

-
*

-" inFig' 29 '

The vertical shear modifies in practice the shape of these forms

near their ends. For instance, a cantilever loaded at the end

p
with P requires a cross-section at the end equal to where S

c
is

the working shearing strength. This cross-section must be pre-

served until a value of x is reached, where the same value of the

cross-section is found from the moment.

The deflection of a cantilever of uniform strength is evidently

greater than that of one of constant cross-section, since the unit-

stress 6" is greater throughout. In any case it may be determined

from the general formula (5) by substituting for Mand /their

values in terms of x, integrating twice, determining the constants,

and then making x equal to / for the maximum value oiy.

For a cantilever loaded at the end and of constant breadth, as

in Fig. 26, formula (5) becomes,

dy _ i zPx 2

Integrating this twice and determining the constants, as in

Art. 34, the equation of the elastic curve is found to be,

/-IT-T.T
In this make x = /, and substitute for 5 its value __, where

Uf
d

r
is the depth of the wall. Then,

8P/3

which is double that of a cantilever of constant cross-section,
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For a cantilever loaded at the end and of constant depth,

formula (5) becomes,

2$

~Ed

By intergrating this twice and determining the constants as

before, the equation of the elastic curve is found, from which the

deflection is,

6P/3

Ebd*

which is fifty per cent greater than for one of uniform section.

Prob. 70. A cast-iron cantilever of uniform strength is to be

4 feet long, 3 inches in breadth and to carry a load of 1 5 ooo

pounds at the end. Find the proper depths for every foot in

length, using 3 ooo pounds per square inch for the horizontal

unit-stress, and 4 ooo pounds per square inch for the shearing

unit-stress.

ART. 40. SIMPLE BEAMS OF UNIFORM STRENGTH.

In the same manner it is easy to deduce the forms of uniform

strength for simple beams of rectangular cross-section.

For a load at the middle and breadth constant, M= y?,Px, and
i>P

hence, ^Sbd
2 = y^Px. Hence d* =

^-*,
from which values

Ov
of d may be found for assumed values of x. Here the profile of

the beam will be parabolic, the vertex being at the support, and

the maximum depth under the load.

For a load at the middle and depth constant, M= y^Px as

*p
before. Hence b =

~^~r2^,
and the plan must be triangular or

lozenge shaped, the width uniformly increasing from the support

to the load.

For a uniform load and constant breadth, M= y2wlx ^w;r
2

,

and hence, d*= ~^r(
lx * 2

), and the profile of the beam must

be elliptical, or preferably a half-ellipse,
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T.W
For a uniform load and constant depth, b = ~^T^X x

*}
an<3

hence the plan should be formed of two parabolas having their

vertices at the middle of the span.

The figures for these four cases are purposely omitted, in order

that the student may draw them on the margin. In the same

manner as in the last Article, it can be shown that the deflection

of a beam of uniform strength loaded at the middle is double that

of one of constant cross-section if the breadth is constant, and is

one and one-half times as much if the depth is constant.

Prob. 71. Find the deflection of a steel spring of constant depth
and uniform strength which is 6 inches wide at the middle, 52

inches long, and loaded at the middle with 600 pounds, the depth

being such that this load strains the material to one-half its elastic

limit.
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CHAPTER IV.

ON RESTRAINED BEAMS AND ON CONTINUOUS BEAMS.

ART. 41. GENERAL PRINCIPLES.

A restrained beam is one whose ends are fastened in walls, or

so arranged that the tangents to the elastic curve at the ends al-

ways remain horizontal. The simplest case of a restrained beam

is a cantilever with one end fixed and the other free. Two other

common cases are a beam fixed at one end and supported at the

other, and a beam fixed at both ends.

A continuous beam is one supported upon several points in the

same horizontal plane. A simple beam may be regarded as a

particular case of a continuous beam where the number of sup-

ports is two. The ends .of a continuous beam are said to be free

when they overhang, supported when they merely rest on abut-

ments, and restrained when they are horizontally fixed in walls.

The general principles of the preceding Chapter hold good for

all kinds of beams. If a plane be imagined to cut any beam at

any point the laws of Arts. 15 and 18 apply to the stresses in that

section. The resisting shear and the resisting moment for that

section have the values deduced in Art. 19, and as in Art. 20 the

two fundamental formulas for investigation are,

(3) S<A = V,

4 = M.
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Here ^ is the vertical shearing unit-stress in the section, and

5" is the horizontal tensile or compressive unit-stress on the fiber

most remote from the neutral axis
;
c is the shortest distance from

that fiber to that axis
;
/ the moment of inertia, and A the area of

the cross-section. V"\s the vertical shear of the external forces

on the left of the section, and M is the bending moment of those

forces with reference to a point in the section. For any given

beam evidently S
s and 6" may be found for any section as soon

as Fand Mare known.

The general equation of the elastic line, deduced in Art. 33, is

also valid for all kinds of beams. It is,

(5)
?L-*L
dx*~ El

where x is the abscissa and y the ordinate of any point of the

elastic curve, M being the bending moment for that section, and

E the coefficient of elasticity of the material.

The vertical shear V is the algebraic sum of the external forces

on the left of the section, or, as in Art. 16,

V= Reactions on left of section minus loads on left of section.

For simple beams and cantilevers the determination of FTor any

special case was easy, as the left reaction could be readily found for

any given loads. For restrained and continuous beams, however,

it is not, in general, easy to find the reactions, and hence a differ-

ent method of determining V is necessary. Let Fig. 30 repre-

sent one span of a continuous or restrained beam. Let V be the

p jp ^
vertical shear for any

j, -JB- f |

section at the distance

)
j

\ x from the left support,
k" and V the vertical shear

Flg30. . . .

at a section infinitely

near to the left support. Also let IP denote the sum of all the

concentrated loads on the distance x, and wx the uniform load.
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Then because V is the algebraic sum of all the vertical forces on

its left, the definition of vertical shear gives,

(6) V=VIPwx.
H-ence Fcan be determined as soon as V is known.

The bending momentM is the algebraic sum of the moments

of the external forces on the left of the section with reference to

a point in that section, or, as in Art. 17,

M= Moments of reactions minus moments of loads.

For the reason just mentioned it is in general necessary to de-

termine M for continuous and restrained beams by a different

method. Let M' denote the bending moment at the left support

of any span as in Fig. 30, and M" that at the right support, while

M is the bending moment for any section distant x from the left

support. Let P be any concentrated load upon the space x at a

distance kl from the left support, k being a fraction less than

unity, and let w be the uniform load per linear unit. Then, be-

cause M is the algebraic sum of all the moments of the external

forces on its left, the definition of bending moment gives,

(7) M= M + Vx IP (x kl} y2 wx*.
Hence Mmay be found for any section as soon as V and M1

are known.

The relation between the bending moment and the vertical

shear at any section is interesting and important. At the section

x the moment is M and the shear is V. At the next consecutive

section x -f dx the moment is M-\- dM, which may also be ex-

pressed by M-\- Vdx. Hence,

v= dM
dx

This may be proved otherwise by differentiating (7) and compar-

ing with (6).

The vertical shear V at the support may be easily found if the

bending moments M' and M" be known. Thus in equation
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(7) make ;tr= /, then M becomes M"
',
and hence,

(8) V^tZ+VL
The whole problem of the discussion of restrained and contin-

uous beams hence consists in the determination of the bending

moments at the supports. When these are known the values of

Mand V may be determined for every section, and the general

formulas (3), (4) and (5) be applied as in Chapter III, to the in-

vestigation of questions of strength and deflection. The formulas

(6), (7) and (8) apply to simple beams and cantilevers also. For

simple beams M1 = M" = o, and V = R since there is no re-

straint at the ends. For cantilevers M1 = o for the free end, and

M" is the moment at the wall.

Prob. 72. A bar of length 2/ and weighing w per linear unit is

supported at the middle. Apply formulas (6) and (7) to the state-

ment of general expressions for the moment and shear at any
section on the left of the support, and also at any section on the

right of the support.

ART. 42. BEAMS OVERHANGING ONE SUPPORT.

A cantilever has its upper fibers in tension and the lower in

compression, while a

simple beam has its

upper fibers in com-

pression and the lower

in tension. Evidently

a beam overhanging

one support, as in Fig.

3 1
,
has its overhanging

part in the condition

of a cantilever, and the

part near the other end

in the condition of a

simple beam. Hence there must be a point i where the stresses

Moments.

Shears.

Fig. 31.

Pi
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change from tension to compression, and where the curvature

changes from positive to negative. This point i is called the in-

flection point ;
it is the point where the bending moment is zero.

Since the beam has but two supports its reactions may be found,

as in Art. 14, and the entire investigation be made by the prin-

ciples of the last Chapter.

Consider a beam loaded uniformly with w per linear unit. Let

/ be the distance between the supports and m the length of the

overhanging portion. Let the left reaction be R
T
and the right

R
2

. Then, for any section distant x from the left support,

When x is less than /, When x is greater than /,

V= R
t wx, V=R^ + R

2 wx,

M= RS y2 wx*. M=Rs+R
2 (x /) wx\

The curves corresponding to these equations are shown on

Fig. 31. The shear curve consists oftwo straight lines
;
V =. R

z

when x = o, V = o when x = '

;
at the right supportw

V= R
T

wl from the first equation, and V R^ + R2
w/from

the second
;
V= o when x= / -f- m. The moment curve consists

of two parts of parabolas ;
M o when x = o, M is a maximum

]T> TT>

when x = -, M= o at the inflection point where x -,
Mw w

has its negative maximum when x = /, and M = o when

x = I + m. The diagrams show clearly the distribution of

shears and moments throughout the beam.

For example, if / = 20 and m = 10 the reactions are found to

be R
z =j.$w and R

2
22..$w. Then the point of zero shear or

maximum moment is at x = 7.5, the inflection point at x = 15,

the maximum shears are + 7.5^, \2.$w and + low, and

the maximum moments are -f- 56.25^ and 5ow. The relative

values of the two maximum moments depend on the ratio of m to /.

If this ratio be zero there is no overhanging part and no negative

moment, and the beam is a simple one. If m y^l the case is
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that just discussed. If m / the beam becomes a cantilever sup-

ported at the middle.

After having thus found the maximum values of V and M the

beam may be investigated by the application of formulas (3) and

(4) in the same manner as a cantilever or simple beam. By the

use of formula (5) the equation of the elastic curve between the

two supports is found to be,

2^Efy = 4Rt (x* t*x)w(x* fix).

From this the maximum deflection for any particular case may be

dv
determined by putting equal to zero, solving for x, and then

dx

finding the corresponding value ofy.

Prob. 73. Find the ratio of m to /so that the maximum posi-

tive moment may equal numerically the maximum negative

moment.

Prob. 74. A light 1 2-inch /beam 25 feet long is used as a floor

beam in a bridge with one sidewalk, the distance between the sup-

ports being 20 feet. Find its factor of safety when the whole

beam is loaded with I 2OO.pounds per linear foot, and also when

only the 20 feet roadway is loaded.

ART. 43. BEAMS FIXED AT ONE END AND SUPPORTED AT

THE OTHER.

When a beam is fixed horizontally in a wall at one end while

the other end is merely supported, the restraint at the fixed end

causes the distribution of moments to be similar to that of a beam

with one overhanging end. The reaction at the supported end

cannot be found by the principles of

j |

i

|

i statics as in Art. 14, but must be

, P"7" determined by the help of the equa-

tion of the elastic curve.y-
LrrnTTTTTTnv

\|l Case I. For a uniform load over

the whole beam let R be the left

reaction as in Fig. 32. Then for any section the bending moment
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is Rx y2wx z
. Hence the differential equation of the elastic

curve is,

EI*L = Rx V^wx\
dx*

Integrate this once and determine the constant from the necessary

dv
condition that = o when x = I. Integrate again and find

dx
the constant from the fact thatjy = o when x = o. Then,

Here also^ = o when x /, and therefore R =
The moment at any point now is M= y#wlx y2wxz

,
and

by placing this equal to zero it is seen that the point of inflection

is at x = y^l. By the method of Art. 23 it is found that the max-

imum moments are + _L wl* and iwP, and that the distribu-

tion of moments is as represented in Fig. 3.2

The point of maximum deflection is found by placing --L. equal
dx

to zero and solving for x. This gives 8x3
glx* -\- fi = o, one

root of which is x = + 0.42157, and this inserted in the value

ofy gives,
wfo

A = 0.0054 _ ,

for the value of the maximum deflection.

Case II. For a load at the middle it is first necessary to con-

sider that there are two elastic curves having a common ordinate

and a common tangent under the load, since the expressions for

the moment are different on opposite sides of the load. Thus

taking the origin as usual at the supported end,

On the left of the load,

(6) El- = */2Rx + C,
dx



8O RESTRAINED BEAMS AND CONTINUOUS BEAMS. IV.

On the right of the load the similar equations are,

(by
Ei-j-x

(cy Ely = \Rx*
-

IP** + KPb* + Cs + Q
To determine the constants consider in (c) that y= o when x = o

and hence that C
3
= o. In (b)' the tangent

-^ = o when x = I

and hence C
2
=

y*.Rl. Since the curves have a common tangen

under the load (b)
=

(b}' for x ^/, and thus the value of C
z

is

found. Since the curves have a common ordinate under the load

(c)
=

(c}' when x = ^/, and thus C
4

is found. Then,

Rx* Px* Plx* Rl*x PI*

-sr ---6-+ -F+ir
From the second of these the value of the reaction is R = ~P.

The moment on the left of the load is now M =
-^- Px, and

that on the rightM= Px + l/2 Pl. The maximum positive

moment obtains at the load and its value is
a
PI. The maximum

negative moment occurs at the wall, and its value is ~ PL The

inflection point is at x = -^ I. The deflection under the load is

readily found from (c) by making x = *-/. The maximum de-

flection occurs at a less value of x, which may be found by
dy

putting = o.
dx

Case III. For a load at any point whose distance from the left

support is kl, the following results may be deduced by a method

exactly similar to that of the last case.

Reaction at supported end = /^/^2 3^ -f- k$).

Reaction at fixed end = Y^P^k fc\

Maximum positive moment = y^Plk(2 3/
3 + k$).

Maximum negative moment = y^Pl(k
3
).
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The absolute maximum deflection occurs under the load when

k = 0.42 2/.

Prob. 75. Find the position of load P which gives the maxi-

mum positive moment. Find also the position which gives the

maximum negative moment.

ART. 44. BEAMS OVERHANGING BOTH SUPPORTS.

When a beam overhangs both supports, as in Fig. 33, there

will be a negative moment at

each support and, in general,

two inflection points and a

positive moment. The rela-

tive values of these will depend

upon the lengths of the over-

hanging parts. If these lengths m and n be equal, the reactions

and negative moments will be equal and the two halves of the

beam be symmetrically strained by a uniform load. In any case,

whatever be the nature of the load, the reactions may be found

by Art. 14 and the maximum vertical shears and bending mo-

ments be determined by the methods of the last Chapter.

Prob. 76. If m = n in Fig. 33, find the ratio of m to I in order

that the maximum positive moment may numerically equal the

maximum negative moments.

Prob. 77. A bridge with two sidewalks has a wooden floor

beam 14 X 15 inches and 30 feet long, the distance between sup-

ports being 20 feet and each sidewalk 5 feet. Find its factor of

safety under a uniformly distributed load of 29 ooo pounds.

ART. 45. BEAMS FIXED AT BOTH ENDS.

Case I. For a uniform load it is evident that the bending
moments at the supports are equal. Then, for any section x,

formula (7) becomes,

M=Mf + Rx y2 wx*,
in which M' is the unknown moment at the left support. By
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inserting this in (5) and integrating twice, making = o when
dx

i

f

i

|

u-a:-! I I, x = o and also when .r = /,

h-1- the value of M1
is found to

'

w/2
- - and the equation

K Flg.34 N|
of the elastic curve is,

2^EIy = w( l*x* + 2/a*_ A
4).

From this the maximum deflection is found to be,

The inflection points are located by making M= o. This gives

x = ^2//^| .
The maximum positive moment is at the

middle and its value is .

24

Case II. For a load at the middle, the bending moment between

p the left end and the load is,

M= M + y2 Px,
and in a similar manner to that of

the last case it is easy to find that

the maximum negative moments

Fig35. are 1

/&PI, that the maximum posi-
* 3

tive moments are 1APL and that the maximum deflection is

Case III. For a load P at a distance kl from the left end, a

method similar to that of Case II, Art. 43, may be followed. Let

M and R' denote the unknown moment and reaction at the left

end and M" and R" those for the right end. Then,

On the left of the load,

(a) 70 = M + R'x,

(b) 1^= M>x+ y2R>x\

(c) Ely = y2Mx* + \R'x\
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On the right of the load,

(a)
r EI

d-~ = M* + R'x + P(x kl)

(c)' Ely =
The constants of integration are here readily determined since

both -r . and y become zero for x = o and for x = I. Then
dx

if x kl, the tangent (6) is equal to ()', and the ordinate (c] to

(cy. This gives two equations from which the values of M1 and

R' are found. Thus the following results are deduced,

Reaction at left end = P(i 3/
2 + 2^),

Reaction at right end = Pk* (3 2k\

Moment at left end = Plk (i 2/ + fr),

Moment at right end = Plk2

(i k\
Moment under load = + Plk2

(2 $k + 2/
2
).

If k = X ^e load is at the middle and these results reduce to

the values found in Case II.

Prob. 78. What wrought iron I beam is required for a span of

24 feet to support a uniform load of 40 ooo pounds, the ends

being merely supported ? What one is needed when the ends

are fixed ?

ART. 46! COMPARISON OF RESTRAINED AND SIMPLE BEAMS.

As the maximum moments for restrained beams are less than

for simple beams their strength is relatively greater. This was

to be expected since the restraint produces a negative bending

moment and lessens the deflection which would otherwise occur.

The comparative strength and stiffness of cantilevers and simple

beams is given in Art. 38. To these may now be added four

cases from Arts. 43 and 45, and the following table be formed,

in which W represents the total load, whether uniform or

concentrated.
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This table shows that a beam fixed at both ends and uniformly

loaded is one and one-half times as strong and five times as stiff

as a simple beam under the same load. The advantage of fixing

the ends is hence very great.

Prob. 79. Find the deflection of a I 9-inch beam of6 feet span
and fixed ends when strained so that the tensile and compressive
stresses at the dangerous section are 14 ooo pounds per square
inch.

ART. 47. PROPERTIES OF CONTINUOUS BEAMS.

The theory of continuous beams presented in the following

pages includes only those with constant cross-section having the

supports on the same level, as only such are used in engineering
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constructions. Unless otherwise stated, the ends will be supposed

to simply rest upon their supports, so that there can be no mo-

ments at those points. Evidently then the end spans are some-

what in the condition of a beam with one overhanging end and

the other spans somewhat in the condition of a beam with two

overhangingfe

A
5

I, i, i, 14

ends. At
{ \

each inter- f* ?* ~~f f^ f*
mediate sup- LnTTTTrrv ..xrrrrrx .xmv I

port there is ^W ^f
a negative X Fi&3&

moment, and

the distribution of moments throughout the beam will be as rep-

resented in Fig. 36.

As shown in Art. 41 the investigation of a continuous beam

depends upon the determination of the bending moments at the

supports. In the case of Fig. 36 these moments being those at

the supports 2, 3 and 4, may be designated M2 ,
M

3
and M^. Let

V^ Vz , V^
and

V^ denote the vertical shear at the right of each

support. The first step is to find the moments M
2 ,
M

3
and M^.

Then from formula (8) the values of V
t ,
V

2 , V^
and V^ are found,

and thus by formula (7) an expression for the bending moment

in each span may be written, from which the maximum positive

moments may be determined. Lastly, by formula (4) the strength

of the beam may be investigated and by (5) its deflection at any

point be deduced.

For example, let the beam in Fig. 36 be regarded as of four

equal spans and uniformly loaded with w pounds per linear unit.

By a method to be explained in the following articles it may be

shown that the bending moments at the supports are,

M
2
= ^wl2

,
M

3
= ^wl

2
, M^ = ^wl

2
,.

From formula (8) the vertical shears at the right of the supports

are,
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F; == g wl, V
2
= ^ wl, V= I wl, etc.

And from (6) those on the left of the supports are found to be,

F/ = ->/, F
2'=-| W/, r

a

' = ->l, etc.

From formula (7) the general moments now are,

For first span, M= ^ wlx

For second span, M= ~ wl2 +

- ^vx'
2

.

>&->*,
For third span, M= ^ wl

2 -

For fourth span, M= ~ wfi -f- ^ wlx ^
wx2

.

From each of these equations the inflection points may be found

by putting M=o, and the point of maximum positive moment

by putting = o. The maximum positive moments are,

For any particular case the beam may now be investigated by
formulas (3) and (4).

The reactions at the supports are not usually needed in the

discussion of continuous beams, but if required they may easily

be found from the adjacent shears. Thus for the above case,

R
t
= o + V

t
= ~

wl,

R
2
= V;+ V

9 =*wl,

R
3
= V

2*+ V
3
= u>t, etc,

and the sum of these is equal to the total load ^wl.

The equation of the elastic curve in any span is deduced by

inserting in (5) for M its value and integrating twice. When

x = o, the tangent -- - is the tangent of the inclination at the
dx

left support and when x = I it is the tangent of the inclination at

the right support. When x = o and also when x = I the ordi-

nate y = o, and from these conditions the two unknown tangents

may be found. In general the maximum deflection in any span
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of a continuous beam will be found intermediate in value between

those of a simple beam and a restrained beam.

In the following pages continuous beams will only be investi-

gated for the case of uniform load. The lengths of the spans

however may be equal or unequal, and the load per linear foot

may vary in the different spans.

Prob. 80. In a continuous beam of three equal spans the nega-
tive bending moments at the supports are ^wl

z
. Find the in-

flection points, the maximum positive moments and the reactions

of the supports.

ART. 48. THE THEOREM OF THREE MOMENTS.

Let the figure represent any two adjacent spans of a continu-

ous beam whose lengths are /' and I" and whose uniform loads

per linear foot are w' and w" respectively. Let M7

,
M" and M"'

represent the three un-

known moments at the K%%%%%3%%^^^^^^^^^^%%^^^^^^^^$$$$$^$$^
supports. Let V and } \

V" be the vertical |y* I V* .

shears at the right of Tig.37

the first and second supports. Then, for any section distant x

from the left support in the first span, the moment is,

M= M1 + Vx y2wx\
If this be inserted in the general formula (5) and integrated twice

and the constants determined by the condition that y = o when

x = o and also when x = I, the value of the tangent of the angle

which the tangent to the elastic curve at any section in the first

span makes with the horizontal is found to be,

dy \2M\2x I'} -f 4 V^x* /'
2

) w'fa* I'*}

dx 2AJELI

Similarly if the origin be taken at the next support the value of

the tangent of inclination at any point in the second span is,

dy \2M"(2x /") + 4V"($x
2 ///2

) w"(4x* I"*)
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Evidently the two curves must have a common tangent at the

support. Hence make x = I' in the first of these and x = o in

the second and equate the results, giving,

i-zM'l' + 8 FV2
3w'/'3 = i2M"l" 4 F"/"

2 + w"l"*.

Let the values of V and V" be expressed by (8) in terms ofM1

',

M" and M" f

,
and the equation reduces to,

(9) M'F + 2M(P
4 4

which is the theorem of three moments for continuous beams

uniformly loaded.

If the spans are all equal and the load uniform throughout,

this reduces to the simpler form,

In any continuous beam of s spans there are s -j- i supports

and s I unknown bending moments at the supports. For

each of these supports an equation of the form of (9) may be

written containing three unknown moments. Thus there will be

stated s I equations whose solution will furnish the values of

the s i unknown quantities.

Prob. 8 1. A simple beam of oak one inch square and 15 inches

long is uniformly loaded with 100 pounds. Find the angle of

inclination of the elastic curve at the supports.

ART. 49. CONTINUOUS BEAMS WITH EQUAL SPANS.

Consider a continuous beam of five equal spans uniformly

loaded. Let the supports beginning on the left be numbered

I, 2, 3, 4, 5 and 6. From the theorem of three moments an

equation may be written for each of the supports 2, 3, 4, and 5 ;

thus, M + M + M =
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Since the ends of the beam rest on abutments without restraint

M
l
= M

6
= o. Hence the four equations furnish the means of

finding the four moments M
2 , M^ M^Me . The solution may be

abridged by the fact that M
2
= M

S ,
and M^ = M^, which is evi-

dent from the symmetry of the beam. Hence,

2 5 , 3 4

From formula (8) the shears at the right of the supports are,

K=iX V,
= l^ V

3 =^wl, etc.

From (6) the bending moment at any point in any span may now

be found as in Art. 47, and by (3), (4) and (5) the complete inves-

tigation of any special case may be effected.

In this way the bending moments at the supports for any num-

ber of equal spans can be deduced. The following triangular

table shows their values for spans as high as seven in number.

In each horizontal line the supports are represented by squares

in which are placed the coefficients of wl2
. For example, in a

beam of 3 spans there are four supports and the bending mo-

ments at those supports are o, ^w^> ^>
w^

2
,
and o.

Moments.
Coefficients of

ness.

The vertical shears at the supports are also shown in the fol-

lowing table for any number of spans up to 5. The space repre-

senting a support shows in its left-hand division the shear on the

left of that support and in its right-hand division the shear on the
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right The sum of the two shears for any support is, of course,

the reaction of that support. For example, in a beam of five equal

spans the reaction at the second support is
~pvl.

Shears.
Coefficients of wl.

Naof
spans.

Fig: 35-

It will be seen on examination that the numbers in any oblique

column of these tables follow a certain law of increase by which

it is possible to extend them, if desired, to a greater number of

spans than are here given.

As an example, let it be required to select a I beam to span

four openings of 8 feet each, the load per span being 500 pounds
and the greatest horizontal stress in any fiber to be 1 2 ooo pounds

per square inch. The required beam must satisfy formula (4), or,

/_ M
C

'

12 OOO

where M is the maximum moment. From the table it is seen

that the greatest negative moment is that at the second support,

or _3-z//2
. The maximum positive moments are,

28

For first span,
V2

max M= ifl

2w 's<*

V*
For second span, max M M

2 + JL. wl2
.

2iv is68

The greatest value of M is hence at the second support. Then,
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/ _ 3 X 500 X 8 X 12

c 12 ooo

and from the table in Art. 30 it is seen that a light /-inch beam

will be required.

Prob. 82. Find what I beam is required to span three openings
of 12 feet each, the load on each span being 600 pounds, and the

greatest value of 6" to be 12 ooo pounds per square inch.

Prob. 83. Draw the curve of moments and the curve of shears

for the case of three equal, spans uniformly loaded.

ART. 50. CONTINUOUS BEAMS WITH UNEQUAL SPANS.

As the first example, consider two spans whose lengths are l
lt
1
2

and whose loads per linear unit are w
1
and w2 . The theorem of

three moments in (9) then reduces to,

and hence the bending moment at the middle support is,

M = _ ^. 3 + V.3

8(/, + 4)

From this the reaction at the left support may be found by (8)

and the bending moment at any point by (6).

Next consider three spans whose lengths are /
I(

/
2
and /

3 ,
loaded

uniformly with zv
lt

u>
2 , w^.

The bending moments at the second

and third supports are M
2
and M

3
. Then from (9),

+ M = - w*

and the solution of these gives the values ofM
2
and M^ A very

common case is that for which /
2
=

/, /
T
= /

3
= nl, and

zv
I
= ^i>

2
= ze>

3
= iv. For this case the solution gives,

M=W = -+-?L "^
2 -f 3

'

4
'

Here if n = i the moments become as shown in the
10

last article.
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Whatever be the lengths of the spans or the intensity of the

loads, the theorem of three moments furnishes the means of find-

ing the bending moments at the supports. Then from (8), (7)

and (6) the vertical shears and bending moments at every section

may be computed. Finally, if the material be not strained beyond
its elastic limit, formula (5) may be used to determine the stiffness,

while (4) investigates the strength of the beam.

Prob. 84. A heavy 1 2-inch I beam of 36 feet length covers

four openings, the two end ones being each 8 feet and the others

each 10 feet in span. Find the maximum moment in the beam.

Then determine the load per linear foot so that the greatest hori-

zontal unit-stress may be 1 2 ooo pounds per square inch.

Prob. 85. A continuous beam of three equal spans is loaded

only in the middle span. Prove that the reactions of the end

supports due to this load are
.

20'

ART. 51. REMARKS ON THE THEORY OF FLEXURE.

The theory of flexure presented in this and the preceding

chapter is called the common theory, and is the one universally

adopted for the practical investigation of beams. It should not

be forgotten, however, that the axioms and laws upon which it is

founded are only approximate and not of an exact nature like

those of mathematics. Laws (A) and (B) for instance are true

as approximate laws of experiment, but not as exact laws of

science. Law (G) indeed rests upon so slight experimental evi-

dence that it is more of a hypothesis than an established truth.

Objections may also be raised against the validity of the method

of resolving the internal stresses into their horizontal and vertical

components, and against the formula (3) which supposes the ver-

tical shear to be uniformly distributed over the cross-section.

When experiments on beams are carried to the point of rup-

ture and the longitudinal unit-stress 5 computed from formula

(4) a disagreement of that value with those found by direct ex-
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periments on tension or compression is observed. This is often

regarded as an objection to the common theory of flexure, but it

is in reality no objection, since law (G) and formula (4) are only

true provided the elastic limit of the material be not exceeded.

Experiments on the deflection of beams furnish on the other hand

the most satisfactory confirmation of the theory. When E is

known by tensile or compressive tests the formulas for deflection

are found to give values closely agreeing with those observed.

Indeed so reliable are these formulas that it is not uncommon to

use them for the purpose of computing E from experiments on

beams. If however the elastic limit of the material be exceeded,

the computed and observed deflections fail to agree.

On the whole it may be concluded that the common theory of

flexure is entirely satisfactory and sufficient for the investigation

of all practical questions relating to the strength and stiffness of

beams. The actual distribution of the internal stresses is however

a matter of very much interest and this will be discussed in

Chapter VIII.

The theory of flexure is here applied to continuous beams only

for the case of uniform loads. It should be said however that

there is no difficulty in extending it to the case of concentrated

loads. By a course of reasoning similar to that of Art. 48 it

may be shown that the theorem of three moments for single

loads is,

Ml' + 2M"(l' + I") + M"l" = Pl'*(k #)
-

P'l"*(2k 3/
2
-f *.)

Here as in Fig. 37 the moments at three consecutive supports

are designated by M, M" and M"' and the lengths of the two

spans by /' and I". P is any load on the first span at a distance

kl' from the left support and P' any load on the second span at

a distance kl" from the left support, k being any fraction less than

unity and not necessarily the same in the two cases. From this

theorem the negative bending moments at the supports for any
concentrated loads may be found, and the beam be then investi-
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gated by formulas (6) and (4). For example, if a beam of three

equal spans be loaded with P at the middle of each span the neg-

ative moments at the supports are each Jz-Pl.
20

The Journal of the Franklin Institute for March and April,

1875, contains an article by the author in which the law of in-

crease of the quantities in the tables of Art. 45 is explained and

demonstrated. A general abbreviated method of deducing the

moments at the supports for both uniform and concentrated loads

on restrained and continuous beams is given in the Philosophical

Magazine for September, 1875. See also Van Nostrand's Science

Series, No. 25.

j^f" Exercise 4. Procure six sticks of ash each ^ X ^ inches and

of lengths i, 2 and 3 feet. Devise and conduct experiments to test

the following laws : First, the strength of a beam varies directly

as its breadth and directly as the square of its depth. Second,

the stiffness of a beam is directly as its breadth and directly as

the cube of its depth. Third, a beam fixed at the ends is twice

as strong and four times as stiff as a simple beam when loaded at

the middle. Write a report describing and discussing the ex-

periments.

Exercise 5. Consult Barlow's Strength of Materials (London,

1837,) and write an essay concerning his experiments to deter-

mine the laws of the strength and stiffness of beams. Consult

also Ball's Experimental Mechanics.

Exercise 6. In order to test the theory of continuous beams

discuss the following experiments by Francis and ascertain

whether or not the ratio of the two observed deflections agrees

with theory.
" A frame was erected, giving 4 bearings in the

same horizontal plane, 4 feet apart, making 3 equal spans, each

bearing being furnished with a knife edge on which the beam was

supported. Immediately over the bearings and secured to the

same frame was fixed a straight edge, from which the deflections

were measured. A bar of common English refined iron, 12 feet

2^ inches long, mean width 1.535 inches, mean depth 0.367
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inches, was laid on the 4 bearings, and loaded at the center of

each span so as to make the deflections the same, the weight at

the middle span being 82.84 pounds and at each of the end spans

52.00 pounds. The deflections with these weights were,

At the center of the middle span 0.281 inches.

At center of end span, 0.275 and 0.284 inches,

mean 0.280 inches.

A piece 3 feet 1 1 ^ inches long was then cut from each end of

the bar, leaving a bar 4 feet 4^ inches long, which was replaced
in its former position and loaded with the same weight (82.84

pounds) as before, when its deflection was found to be 1.059

inches."

Prob. 86. A beam of three spans, the center one being / and

the side ones nl, is loaded with P at the middle of each span. Find

the value of n so that the reactions may be equal.
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CHAPTER V.

ON THE COMPRESSION OF COLUMNS.

ART. 52. CROSS-SECTIONS OF COLUMNS.

A column is a prism, greater in length than about ten times

its least diameter, which is subject to compression. If the prism

be only about four or six times as long as its least diameter the

case is one of simple compression, the constants for which are

given in Art. 6. In a case of simple compression failure occurs

by the crushing and splintering of the material, or by shearing

in directions oblique to the length. In the case of a column,

however, failure is apt to occur by a sidewise bending which in-

duces transverse stresses and causes the material to be highly

strained under the combined compression and flexure.

Wooden columns are usually square or round and they may
be built hollow. Cast iron columns are usually round and they

are often cast hollow. Wrought iron columns are made of a

great variety of forms. A I may be used as a column, but they

are usually made of three or more different shape-irons riveted

together. The Phoenix column is made by riveting together

flanged circular segments so as to form a closed cylinder. It is

evident that a square or round section is preferable to an unsym-
metrical one, since then the liability to bending is the same in all

directions. For a rectangular section the plane of flexure will

evidently be perpendicular to the longer side of the cross-section,

and in general the plane of flexure will be perpendicular to that

axis of the cross-section for which the moment of inertia is the
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least. In designing a column it is hence advisable that the cross-

section should be so arranged that the moments of inertia about

the two principal rectangular axes may be equal.

For instance, let it be required to construct a column with two

I shapes and two plates as shown in Fig. 40. The I beams are

to be light lo-inch ones weighing 30 pounds

per linear foot, and having the flanges 4.32

inches wide. The plates are to be ^ inch

thick and it is required to find their length

x so that the liability to bending about the

two axes shown in the figure may be the

same. From the table in Fig. 30 it is ascer- JJ^Jm\^myliiiil
tained that the moment of inertia / of the Fig^o.

beam about an axis through its center of

gravity and perpendicular to the web is 150, while the moment of

inertia F about an axis through the same point and parallel to

the web is nearly 8. Hence, for the axes shown in Fig. 40, the

moments of inertia are,

For axis perpendicular to plates,

2' 5 * * 3

+2X8 + 2X9x(^ 2.16)

'

For axis parallel to plates,

x X 0.53
2 - ~ + 2 X 0.$X X 5-2S

2 + 2 X 150.

Placing these two expressions equal, the value of x is found to

be between 10^ and n inches.

Prob. 87. A column is to be formed of two light 1 2-inch eye-

beams connected by a lattice bracing. Find the proper distance

between their centers, disregarding the moment of inertia of

the latticing.

Prob. 88. Two joists each 2X4 inches are to be placed 6

inches apart between their centers, and connected by two others

each 8 inches wide and x inches thick so as to form a closed hol-

low rectangular column. Find the proper value of x.



gS COMPRESSION OF COLUMNS. V.

ART. 53. GENERAL PRINCIPLES.

If a short prism of cross-section A be loaded with the weight

P, the internal stress is to be regarded as uniformly distributed

over the cross-section, and hence the compressive unit-stress S
c

p
is

.
But for a long prism, or column, this is not the case

;

^jt

p
while the average unit-stress is _, the stress in certain parts of

A
the cross-section may be greater and upon others less than this

value on account of the transverse stresses due to the sidewise

flexure. Hence in designing a column the load P must be taken

as smaller for a long one than for a short one, since evidently the

liability to bending increases with the length.

Numerous experiments on the rupture of columns have shown

that the load causing the rupture is approximately inversely pro-

portional to the length of the column. That is to say, if there be

two columns of the same material and cross-section and one

twice as long as the other, the long one will rupture under about

one-quarter the load of the short one.

The condition of the ends of columns exerts a great influence

upon their strength. Class (a) includes those with
' round ends,'

or those in such condition that they are free to turn at the ends.

Class (c) includes those whose ends

are 'fixed' or in such condition that

the tangent to the curve at the ends

always remains vertical. Class ($)

includes those with one end fixed

and the other round. In architecture

it is rare that any other than class (c]

is used. In bridge construction and

Fig. 41.
in machines, however, columns of

classes (G) and (a) are very common.

It is .evident that class (c) is stronger than (b), and that
(ff)

is
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stronger than (c), and this is confirmed by all experiments.

Fig. 41 is intended as a symbolical representation of the three

classes of columns, and not as showing how the ends are ren-

dered
' round

'

and '

fixed
'

in practical constructions.

The theory of the resistance of columns has not yet been per-

fected like that of beams, and accordingly the formulas for prac-

tical use are largely of an empirical character. The form of the

formulas however is generally determined from certain theoreti-

cal considerations, and these will be presented in the following

articles as a basis for deducing the practical rules.

Prob. 89. A column formed of two I beams each weighing 93

pounds per yard is 1 1 inches square and 3 feet long. What
load will it carry with a factor of safety of 5 ?

ART. 54. EULER'S FORMULA.

Consider a column of cross-section A loaded with a weight P
under whose action a certain small sidewise bend-

ing occurs. Let the column be round or free to

turn at both ends as in Fig. 42. Take the origin

at the upper end, and let x be the vertical and y
the horizontal co-ordinate of any point of the elas-

tic curve. The general equation (4), deduced in

Art 33, applies to all bodies subject to flexure

provided the bending be slight and the elastic

limit of the material be not exceeded. For the

column the bending moment is Py t
and hence,

dx*

The first integration of this -gives,

But when y = the maximum deflection J, the tangent -Z.= o.

dx
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Hence C= PA2
,
and by inversion,

V.

The second integration now gives,

x = (
j

arc sin

Here C' is o because y o when x = o. Hence finally the

equation of the elastic curve of the column is,

y
~. + C.

j, = sn

This equation is that of a sinusoid. But also y = o when x = I.

Hence if n be an integer, /(
)

'* must equal UK, or,

772.7.2P = El,
/2

which is Euler's formula for the resistance of columns. This re-

duces the equation of the sinusoid to,

The three 'curves for n= I, n = 2, and n =t 3 are shown in Fig.

43. In the first case the curve
n n f!

is entirely on one side of the

axis of x, in the second case it

crosses that axis at the middle,

and in the third case it crosses

at ^/and ^/, the points of cross-

ing being also inflection points

n=2

Fig". 43.

71=3 where the bending moment is

zero. Evidently the greatest

deflection will occur for the case where n = i, and this is the

most dangerous case. Hence,

(a) P =

is Euler's formula for columns with round ends.



ART. 54. EULER'S FORMULA. 101

A column with one end fixed and the other round is closely

represented by the portion b'b" of the second case, b' being the

fixed end where the tangent to the curve is vertical. Here n = 2,

and the length b'b" is three-fourths of the entire length, hence,

(b) P = f^-
is Euler's formula for columns with one end fixed and the other

round.

A column with fixed ends is represented by the portion c'c" of

the case c. Here n = 3, and the length c'c" is three-fourths of

the entire length, hence,

is Euler's formula for columns with fixed ends.

From this investigation it appears that the relative resistances

of three columns of the classes (a), (b) and (<:)
are as the numbers

1,2^ and 4, when the lengths are the same, and this conclusion

is approximately verified by experiments. It also appears that,

if the resistance of three columns of the classes (a), (H) and (c) are

to be equal, their lengths must be as the numbers I, \y2 and 2.

The moment of inertia / in the above formulas is taken about

a neutral axis of the cross-section perpendicular to the plane of

the flexure, and in general is the least moment of inertia of that

cross-section, since the column will bend in the direction which

offers the least resistance. For a rectangular column whose

greatest side is b and least side d, the formulas may be written,

i /P = --- , where m = i, 2%, or 4.

For a cylindrical column of diameter d the formulas are,

mx^Ed* /P = ----
,

where m = 1
,
2% ,

or 4.
64/

2

Hence the strength of a column varies directly as its cross-section

and directly as the square of its least diameter or side. In genera]
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if r be the least radius of gyration of the cross-section the value

of / is Ar* and the formula may be written,

P_=
mr:^

^^ m = ^^ Qr ^

which shows that P varies as the square of the ratio of r to /.

The maximum deflection J is indeterminate, so that the load

P, given by Euler's formula, is merely the load which causes the

column to bend. Practically the bending of a column is the

beginning of its failure.

Prob. 90. Show that Euler's formula for the case of a column
P 7T

2
J ?'

2

fixed at one end and entirely free at the other is ----
A 4/

2

ART. 55. HODGKINSON'S FORMULAS.

Euler's formula gives valuable information regarding the laws

of flexure of columns, but is difficult of direct practical application

because it indicates no relation between the load P and the greatest

internal compressive unit-stress. It shows that the strength of

cylindrical columns varies directly as the fourth power of the diam-

eter and inversely as the square of the length. Hodgkinson in his

experiments observed that this was approximately but not exactly

the case. He therefore wrote for each kind of columns the ana-

logous expression,

and determined the constants a, ft and d from the results of his

experiments, thus producing empirical formulas.

Let P be the crushing load in gross tons, d the diameter of the

column in inches, and / its length in feet. Then Hodgkinson's

empirical formulas are,

For solid cast iron cylindrical columns,

P= 14.9- for round 'ends,

P = 44.2 for flat ends r

IT- -03
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For solid wrought iron cylindrical columns,

dz '
lf>

P = 42 for round ends,

P = 134 for flat ends.

These formulas indicate that the ultimate strength of flat-ended

columns is about three times that of round-ended ones. The

experiments also showed that the strength of a column with one

end flat and the other end round is about twice that of one having

both ends round. Hodgkinson's tests were made upon small col-

umns and his formulas are not so reliable as those which will be

given in the following articles. For small cast iron columns how-

ever the formulas are still valuable.

By the help of logarithms it is easy to apply these formulas to

the discussion of given cases. Usually P will be given and d re-

quired, or d be given and P required. By using assumed factors

of safety the proper size of cylindrical columns to carry given loads

may also be determined. These formulas, it should be remem-

bered, do not apply to columns shorter than about thirty times

their least diameters. The word flat used in this article is to be

regarded as equivalent to fixed.

Prob. 91. A cast iron cylindrical column with flat ends is 3

inches diameter and 8 feet long. What load will cause it to fail ?

Prob. 92. A cast iron cylindrical column with flat ends is to be

7 feet long and carry a load of 200 ooo pounds with a factor of

safety of 6. Find the proper diameter.

ART. 56. TREDGOLD'S FORMULA.

The formulas of Euler are defective because they contain no

constant indicating the working or ultimate compressive strength

of the material and because they apply only to long columns.

Hodgkinson's formulas are unsatisfactory for similar reasons and

because they do not well represent the results of later experiments;
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Tredgold's formula was deduced to remedy these defects. It may
be established by the following considerations.

Let the column be of rectangular section, the area being A, the

least side d, the greatest side b, and the length /. Let P be the

load upon it. The average compressive unit-

p
stress at any section is , but in conse-

^

quence of the sidewise deflection this is in-

creased on the concave side and decreased

on the convex side by an amount .S. From

the fundamental equation (4) the value of 5

is , and if J be the maximum deflection
bd*

the greatest value of 6" is
6PJ Now if 5 he

the total compressive unit-stress on the con-

p
cave side S = Sc , and hence,A

S 6PJ 6P4

Accordingly the value of Sc
is

~ _ P P 64
c ~~A+~A~d'

The value of J is unknown, but if the curve of deflection be

an arc of a circle, which it is very nearly, J equals approximately
I2

, in which R represents the radius of curvature of the column.

Now, as in Art. 33, the value of R for the same unit-stress J>

varies directly as d and inversely as E. Hence J may be taken

as varying directly as /2 and inversely as d. Accordingly if k be

a number depending upon the kind of material and the arrange-

ment of the ends of the column, the value of S
f may be written,

4
-.

4<C
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p
From this the value of the unit load is,A

which is Tredgold's formula for resistance of columns.

The quantity k can not be determined theoretically. As the

above reasoning shows, its value varies with the form of cross-

section as well as with the kind of material and the arrangement

of the ends of the column. For instance, the value of k is not

the same for a circular section with diameter d as for a rectangu-

lar section whose least side is d. It is however not uncommon

to find this formula stated as applicable to any cross-section whose

least diameter is d.

In order to determine k recourse must be had to experiments.

These are usually conducted by loading columns to the point of

rupture. P, A, I and d are known and thus the constants S
c
and

k may be computed. Theoretically Sc
is the ultimate compressive

strength of the material and the values found for it by experi-

ments on columns agree roughly with those deduced by the direct

crushing of short specimens. The value of k is always less than

unity and it is subject to great variation, even in columns of the

same material. For a column with round ends k was regarded

by Tredgold and Gordon as being four times as great as for a col-

umn with fixed ends, since both experiment and theory indicate

that a fixed-ended column of length 2.1 has the same strength as a

round-ended column of length /. Therefore for the ultimate

strength of columns,

P S
For fixed ends, =

,

P S
For round ends, - = c-
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The following values of S
c
and k were deduced by Gordon from

Hodgkinson's experiments, and are given by Rankine,

For stone and brick, 5 = see Art. 6, k = -^->c OOO

For timber (rectangular sections), S
c
= 7 200, k = '

For cast iron cylinders, S
c
= 80 ooo, k -^-,

For wrought iron (rectangular sections), Sc
= 36 ooo, k =

These values of S
c
are in pounds per square inch, while those of

k are abstract numbers.

Tredgold's formula is sometimes used under the name of Gor-

don's formula, The reasoning by which it is deduced is not en-

tirely satisfactory and it often fails to properly represent the results

of experiment.

Prob. 93. Find the values of S
c
and k from the two following

experiments on flat-ended Phoenix columns. The sectional area

of each column was 1 2 square inches and the exterior diameter 8

inches. The length of the first column was 25 feet and it failed

under a load of 420 ooo pounds. The length of the second col-

umn was 10 feet and it failed under a load of 478 ooo pounds.

ART. 57. GORDON'S FORMULA.

The formula which seems to most satisfactorily represent the

results of experiments will now be deduced. It is often called

Gordon's formula and sometimes Rankine's formula, and occasion-

ally it is referred to as
" Gordon's formula modified by Rankine."

It does not appear however that either Gordon or Rankine devel-

oped it in its general form or used it for the discussion of experi-

ments. The name of Gordon will here be applied to it because

that is most frequently used and because of the lack of a better

appellation. It is similar to Tredgold's formula, but has the ad-

vantage of being applicable to any form of cross-section.

Let P be the load on the column, / its length, A the area of its

gross-section, / the moment of inertia and r the radius of gyra-
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tion of that cross-section with reference to a neutral axis perpen-

dicular to the plane of flexure, and c the shortest distance from

that axis to the remotest fiber on the concave side. The average

compressive unit-stress on any cross-sec-

p
tion is but in consequence of the flex-

A
ure this is increased on the concave side

and decreased on the convex side. Thus

p
in Fig. 45 the average unit-stress is

A

represented by ab, but on the concave side

this is increased to eg and on the convex

side decreased to eh. The triangles bdg and bfh represent the

effect of the flexure exactly as in the case of beams, dg indicating

the greatest compressive and hf the greatest tensile unit-stress due

to the bending. Let the total maximum unit-stress be denoted

by J> and the part due to the flexure be denoted by 6". Then,

Me
Now, from the fundamental formula (4), theflexural stress is ,

where M is the external bending moment, which for a column has

its greatest value when M PJ, A being the maximum deflection.

/ Ar2
is the well known relation between / and r. Hence the

value of 5 is,

s_**.f.

By analogy with the theory of beams, as in Art. 37, the value of

/
2

J may be regarded as varying directly as _. Hence if q be a
c

quantity depending upon the kind of material and the condition

of the ends, the total unit-stress is,
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This may now be written in the usual form,

0) -*
= ~^.

which is Gordon's formula for the investigation of columns.

The above reasoning has been without reference to the arrange-

ment of the ends of the column. By Art. 54 it is known that a

column with round ends must be one-half the length of one with

fixed ends in order to be of equal strength, and that a column

with one end fixed and the other round must be three-fourths the

length of one with fixed ends in order to be of equal strength.

Therefore if q be the constant for fixed ends, (^fq
will be the

constant for one end fixed and the other round, and 2z
q will be

the constant for both ends round.

The values of q to be taken for use in formula (10) for the ex-

amples and problems of this chapter may be the following rough

values, unless otherwise stated, while the values of the ultimate

compressive unit-stress S
c
will be taken from Art. 6.

The very wide variation in the values of q found from different

experiments shows however that little dependence can be placed

upon average results. In any practical case of importance an
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effort should be made to ascertain values of S
c
and q for the special

kind of columns on hand.

Prob. 94. Plot the curve represented by formula (10) for cases

of wrought iron columns with fixed and with round ends, taking

P I
the values of as ordinates and the values of as abscissas.

A r

ART. 58. RADIUS OF GYRATION OF CROSS-SECTIONS.

The radius of gyration of a surface with reference to an axis is

equal to the square root of the ratio pf the moment of inertia of

the surface referred to the same axis to the area of the figure. Or

if r be radius of gyration, / the moment of inertia and A the area

of the surface, then /= Ar 2
.

In the investigation of columns by formula (10) the value of r 2

is required, r being the least radius of gyration. These values

are readily derived from the expressions for the moment of inertia

given in Art. 22, the most common cases being the following.

For a rectangle whose least side is d. r2 =
12

For a circle of diameter d, r2 =
16

For a triangle whose least altitude is d, r2 = --.
Io

u n d* + d'*
For a hollow square section, r2- = .

12

For a hollow circular section, r2 =
.

16

For I beams and other shapes r 2
is found by dividing the least

moment of inertia of the cross-section by the area of that cross-

section. For instance, by the help of the table in Art. 30, the

least value of r2 for a light 12-inch eye beam is found to be
~

6
- = 0.87 inches2

.

Prob. 95. An angle iron is 3 X 4 X 0.5 inches. Find the least

moment of inertia and least radius of gyration.
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ART. 59. INVESTIGATION OF COLUMNS.

The investigation of a column consists in determining the max-

imum compressive unit-stress S
c
from formula (10). The values

of P, A, I and r will be known from the data of the given case

and q is known from the results of previous experiments. Then,

and, by comparing the computed value of S
c
with the ultimate

strength and elastic limit of the material, the factor of safety and

the degree of stability of th: column may be inferred.

For example, consider a hollow cast iron column of rectangu-

lar section, the outside dimensions being 4X5 inches and the

inside dimensions 3X4 inches. Let the length be 18 feet, the

ends fixed, and the load be 80 ooo pounds. Here P= 80 ooo,

A =8 square inches, / = 216 inches. From the table q = _L_
3000'

From Art. 58,

_ 5 X 43 - 4 X 3
2

_
12 X 8

Then the substitution of these values gives,

80 ooo/ . 216 X 216 \S
e
= i + - = 42 ooo pounds per square in.

Here the average unit-ctress is 10 ooo pounds per square inch,

but the flexure has increased that stress on the concave side to

42 ooo pounds per square inch so that the factor of safety is only

about two.

Prob. 96. A cylindrical wrought iron column with fixed ends is

12 feet long, 6.36 inches in exterior diameter, 6.02 inches in in-

terior diameter, and carries a load of 98 ooo pounds. Find its

factor of safety.

Prob. 97. A pine stick 3X3 inches and 12 feet long is used

as a column with fixed ends. Find its factor of safety under a

load of 3 ooo pounds. If the length be only one foot, what is

the factor of safety.
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ART. 60. SAFE LOADS FOR COLUMNS.

To determine the safe load for a given column it is necessary

to first assume the allowable working unit-stress S
c

. Then from

formula (10) the safe load is,

P S<A

Here A, I and r are known from the data of the given problem

and q is taken from the table in Art. 58.

For example, let it be required to determine the safe load for a

fixed-ended timber column, 3X3 inches square and 1 2 feet long,

so that the greatest compressive unit-stress may be 800 pounds

per square inch. From the formula, /

800 X QP = --- - = about 700 pounds.

3 ooo X~3~
2

A short prism 3X3 inches should safely carry ten times this

load.

Prob. 98. Find the safe load for a heavy wrought iron I of 1 5

inches depth and for lengths of 5, loand 15 feet when used as

columns with fixed ends.

ART. 61. DESIGNING OF COLUMNS.

When a column is to be selected or designed the load to be

borne will be known, as also its length and the condition of the

ends. A proper allowable unit-stress S
c

is assumed, suitable for

the given material under the conditions in which it is used. Then

from formula (i) the cross-section of a short column or prism is

p
and it is certain that a greater value of the cross-section than

this will be required. Next assume a form and area A, find r2
,

and from the formula
(
i o) compute S

c
. If the computed value

agrees with the assumed value the correct size has been selected.
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If not, assume a new area and compute S
c again, and continue

the process until a proper agreement is attained.

For example, a hollow cast iron rectangular column of 18 feet

length is to carry a load of 60 ooo pounds. Let the working

strength Sc
be 15 ooo pounds per square inch. Then for a short

length the area required would be four square inches. Assume
then that about 6 square inches will be needed. Let the section

be square, the exterior dimensions 6X6 inches, and the interior

dimensions 5^ X $^2 inches. Then ^ = 5.75, /= 18 X 12,

^=60000, g = --, r 2 =
5.52, and from (10),

5 ooo

60 ooo/ i82 X I22 \
S. = I i H -

I = about 30 ooo,
5.75 V 5 ooo X 5.52 /

which shows that the dimensions are much too small.

Again assume the exterior side as 6 inches and the interior as

5 inches. Then A = II, r 2 =
5.08, and

c 60 ooo/ i82 X I22 \
S, = I i + -

I = about 15 700.
ii V 5 ooo X 5.08 /

As this is very near the required working stress it appears that

these dimensions very nearly satisfy the imposed conditions.

In many instances it is possible to assume all the dimensions

of the column except one and then after expressing A and r in

terms of this unknown quantity to introduce them into (10) and

solve the problem by finding the root of the equation thus formed.

For example let it be required to find the size of a square wooden

column with fixed ends and 24 feet long to sustain a load of

100 ooo pounds with a factor of safety of 10. Here let x be the

unknown side; then A =x* and r 2 = From (10),
12

x* 3000X*8

By reduction this becomes,

8;t4 i ooox2 = 25 1 776,

the solution of which gives 14.6 inches for the side of the column.
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Prob. 99. A hollow cylindrical cast iron column is to be de-

signed to carry a load of 200 ooo pounds. Its length is to be 12

feet, its ends flat or fixed, its exterior diameter 6 inches and the

allowable unit-stress 1 5 ooo pounds per square inch. Find the

proper interior diameter.

Prob. 100. Find the size of a square wooden column with fixed

ends and 12 feet in length to sustain a load of 100 ooo pounds
with a factor of safety of 10. Find also its size for round ends.

ART. 62. EXPERIMENTS ON COLUMNS.

It is impossible to present here even a summary of the many

experiments that have been made to determine the laws of re-

sistance of columns. The interesting tests made by Christie in

1883 for the Pencoyd Iron Works will however be briefly de-

scribed on account of their great value and completeness as re-

gards wrought iron struts, embracing angle, tee, beam and chan-

nel sections. See Transactions of the American Society of Civil

Engineers, April, 1884.

The ends of the struts were arranged in different methods
;

first flat ends between parallel plates to which the specimen was

in no way connected
; second, fixed ends, or ends rigidly clamped ;

third, hinged ends, or ends fitted to hemispherical balls and

sockets or cylindrical pins; fourth, round ends, or ends fitted

to balls resting on flat plates.

The number of experiments was about 300, of which about

one-third were upon angles, and one-third upon tees. The qual-

ity of the wrought iron was about as follows : elastic limit 32 ooo

pounds per square inch, ultimate tensile strength 49 600 pounds

per square inch, ultimate elongation 18 percent in 8 inches. The

length of the specimens varied from 6 inches up to 16 feet, and

the ratio of length to least radius of gyration varied from 20 to

480. Each specimen was placed in a Fairbanks' testing machine

of 50 ooo pounds capacity and the power applied by hand through

a system of gearing to two rigidly parallel plates between which
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the specimen was placed in a vertical position. The pressure or

load was measured on an ordinary scale beam, pivoted on knife

edges and carrying a moving weight which registered the pressure

automatically. At each increment of 5 ooo pounds, the lateral

deflection of the column was measured. The load was increased

until failure occured.

The following are the combined average results of these care-

fully conducted experiments. The first column gives the values

of , and the other columns
r

the value of or the ultimate
A

load per inch of cross-section. From these results it will be seen
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that when the strut is short there is no practical difference in the

strength of the four classes, and that when the strut is long there

is but little difference between those with flat and hinged ends.

The strength of the long columns with fixed ends appears to be

about 3^ times that of the round-ended ones.

Prob. 101. Plot the above experiments, taking the values of

/ P
- as abscissas and those of as ordinates.
r A

Prob. 1 02. What load will cause the rupture of a wrought iron

strut of an angle section i X I X #J inch and 5 feet long when

acting with flat ends ? Ans. About 7 200 pounds.

ART. 63. ON THE THEORY OF COLUMNS.

It has been already remarked that the theory of columns is in

a very incomplete condition compared with that of beams. A
satisfactory formula for the resistance of columns should be of

such a nature that for a short block which fails by pure crushing

it would reduce to the equation P= AS
C ,
while for a long strut

which fails by bending it would reduce to an expression like

Euler's. The formula of Gordon conforms partly to this require-

ment, but the fact that it is impossible to determine values of q of

general applicability indicates that q is not a constant, and that

the reasoning by which it is deduced is faulty. Nevertheless

Gordon's formula applies so well to columns of medium length

that it is extensively employed in this country in the manner

illustrated in the preceding articles.

For long columns Euler's formula often represents fairly the

results of experiments, and since it contains / it may be adapted

to any form of cross-section. Thus /= Ar2
, and,

For round ends, A
p

For fixed ends, A
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For wrought iron E equals about 25 ooo ooo pounds per square

inch and hence for round ends,

if - = 200, 300, 400,
r

p = 6 250, 2 800, i 600,A
and these agree well with the experimental values given in the

last article.

In conclusion it may be well to show that Gordon's formula

when properly deduced is essentially of the same form as Euler's,

and that the number q cannot be a true constant. For this pur-

pose consider the reasoning of Art. 57, and as there take the total

compressive unit-stress S
c
on the concave side as equal to the

sum of the average unit-stress and the flexural unit-stress, or,

From the fundamental formula (4) the value of .S" is,

z_PAc
"A?'

Now to express J in terms of /, consider the case of columns

with round ends which deflect into a sinusoid curve, whose

equation according to Art. 54 is,

. . KX
y = A sin

The second derivative of y with respect to x is,

d?y Jn* . KX= sin
dx2 I2 I

For the middle of the column where x = *l, the curvature

hence is,

But the investigation of Art. 33 shows also that SR = EC. Hence,
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The value of the total unit-stress Sc now is,

','(

*?2\t-
and this is the same as (10), except that q has been replaced by

S - - --
A which is not a constant since it varies with

.
This

71
2E A

p
expression is a quadratic with reference to , and by solution

A
are found the two values,

P P 7t
2Er2

~A Sgi anc*

"4 fc'

the first of which corresponds to the formula for short blocks

and the latter to Euler's formula for columns with round ends.

Prob. 103. Prove that /fc' = r 2
for a column so deflected that

there is no stress on the convex side, c' being the distance from

that side to the neutral axis of the cross-section.
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CHAPTER VI.

ON TORSION AND ON SHAFTS FOR TRANSMITTING POWER.

ART. 64. THE PHENOMENA OF TORSION.

Torsion occurs when applied forces tend to cause a twisting of

a body around an

axis. Let one end

of a horizontal shaft

be rigidly fixed and

let the free end have

a lever p attached at

right angles to its

f

axis. A weight P
hung at the end of

this lever will twist the shaft so that fibers such as ab, which were

originally horizontal, assume a spiral form ad like the strands of

a rope. Radial lines such as cb will also have moved through a

certain angle bed.

Experiments have proved, that if P be not so large as to strain

the material beyond its elastic limit, the angles bed and bad

are proportional to P and that on the removal of the stress the

lines cd and ad return to their original positions cb and ab. The

angle bed is evidently proportional to the length of the shaft,

while bad is independent of the length. If the elastic limit be ex-

ceeded this proportionality does not hold, and if the twisting be

great enough the shaft will be ruptured. These laws are but a

particular case of the general axioms stated in Art. 3.
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The product Pp is the moment of the force P with respect to

the axis of the shaft, p being the perpendicular distance from that

axis to the line of direction of P, and is called the twisting mo-

ment. Whatever be the number of forces acting at the end of

the shaft, their resulting twisting moment may always be repre-

sented by a single product Pp.

A graphical representation of the phenomena of torsion may
be made as in Fig. I

,
the angles of torsion being taken as abscis-

sas and the twisting moments as ordinates. The curve is then a

straight line from the origin until the elastic limit of the material

is reached, when a rapid change occurs and it soon becomes

nearly parallel to the axis of abscissas. The total angle of torr

sion, like the total ultimate elongation, serves to compare the

relative ductility of specimens.

Prob. 104. A shaft 2 feet long is twisted through an angle of 7

degrees by a force of 200 pounds acting at a distance of 6 inches

from the center. Through what angle will a shaft 4 feet long be

twisted by a force of 500 pounds acting at a distance of 18 inches

from the center?

ART. 65. THE FUNDAMENTAL FORMULA FOR TORSION.

The stresses which occur in torsion are those of shearing, each

cross-section tending to shear off from the one adjacent to it.

When equilibrium obtains the external twisting moment is exactly

balanced by the sum of the moments of these internal stresses, or,

Resisting moment = Twisting moment.

If P be the force acting at a distance p from the center about,

which the twisting takes place, the value of the twisting moment

is Pp. To find the resisting moment, let c be the distance from

the center to the remotest part of the cross-section where the

unit-shear is ^. Then since the stresses vary as their distances

from the center,

- = unit-stress at a unit's distance from center,
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= unit-stress at a distance z from center,
c

= total stress on an elementary area a,

~2

= moment of this stress,

= internal resisting moment.
c

This may be written i 2az*. But 2az2
is the polar moment of

c

inertia of the cross-section and may be denoted byy. Therefore,

(11) ^L=Pp y

which is the fundamental formula for torsion.

The analogy of formula (11) with formula (4) for the flexure

of beams will be noted. Pp, the twisting moment, is often the

resultant of several forces and might have been expressed by a

single letter like the Min (4). By means of (i i) a shaft subjected

to a given moment may be investigated, or the proper size be

determined for a shaft to resist given forces.

Prob. 105. A circular shaft is subjected to a maximum shearing

unit-stress of 2 ooo pounds when twisted by a force of 90 pounds
at a distance of 27 inches from the center. What unit-stress will

be produced in the same shaft by two forces of 40 pounds one

acting at 2 1 and the other at 36 inches from the center ?

ART. 66. POLAR MOMENTS OF INERTIA.

The polar moment of inertia for simple figures is readily found

by the help of the calculus, as explained in works on elementary

mechanics. It is also a fudamental principle that,

where J is the polar moment of inertia, 7
t
the least and 7

2
the

greatest rectangular moment of inertia about two axes passing
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through the center. The following are values ofJ for some of

the most common cases.

Tid*
For a circle with a diameter d, J =

For a square whose side is d, J =
6

For a rectangle with sides b and d. J = _(_

12
T

12

The value of c in all cases is the distance from the center about

which the twisting occurs, usually the center of figure of the

cross-section, to the remotest part of the cross-section. Thus,

For a circle with diameter d, c = ^d,

For a square whose side is d, c = dy ]/?,.

For a rectangle with sides b and d, c = y^y
'b2 + d2

.

It is rare in practice that formulas for torsion are needed for any
cross-sections except squares and circles.

Prob. 1 06. Find the values of J and c for an equilateral tri-

angle whose side is d.

ART. 67. THE CONSTANTS OF TORSION.

The constant ^ computed from experiments on the rupture of

shafts by means of formula (u) may be called the modulus of

torsion, in analogy with the modulus of rupture as computed
from (4). As would be expected the values thus found agree

closely with the ultimate shearing unit-stress given in Art. 7, viz.,

For timber, ^ = 2 ooo pounds per square inch,

For cast iron, 5, = 25 ooo pounds per square inch,

For wrought iron, ^ = 50 ooo pounds per square inch,

For steel, S^ = 75 ooo pounds per square inch.

By the use of these average values it is hence easy to compute

from (i i) the load P acting at the distance / which will cause the

rupture of a given shaft.
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The coefficient of elasticity for shearing may be computed
from experiments on torsion in the following manner. Let a cir-

cular shaft whose length is / and diameter d be twisted through
an angle 6 by the twisting moment Pp. Here a point on the cir-

cumference of one end is twisted relative to a corresponding

point on the other end through the arc or through the dis-

tance y2 Qd. From the fundamental definition of the coefficient

of elasticity E as given in (i),

s
~~

Od

and inserting for ^ its value from (i i),

E - VPPl

from which E can be computed when all the quantities in the

second member have been determined by experiment, provided

that the elastic limit of the material be not exceeded.

Prob. 107. An iron shaft 5 feet long and 2 inches in diameter

is twisted through an angle of 7 degrees by a force of 5 ooo

pounds acting at 6 inches from the center, and on the removal of

the force springs back to its original position. Find the value of

E for shearing.

Prob. 108. What force P acting at the end of a lever 24 inches

long will twist asunder a steel shaft 1.4 inches in diameter?

ART. 68. SHAFTS FOR THE TRANSMISSION OF HORSE POWER.

Work is the product of a resistance by the distance through

which it acts, and is usually measured in foot-pounds. A horse-

power is 33 ooo foot-pounds of work done in one minute. It is

required to determine the relation between the horse-power H
transmitted by a shaft and the greatest internal shearing unit-

stress 5^ produced in it.

Let a shaft making n revolutions per minute transmit H horse-

power. The work may be applied by a belt from the motor to a
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pulley on the shaft, then, by virtue of the elasticity and resistance

of the material of the shaft, it is carried through other pulleys and

belts to the working machines. In doing this the shaft is strained

and twisted, and evidently ^ increases with H. Let P be

the resistance acting at the circumference of the pulley and p
the radius of the pulley. In making one revolution the force P
acts through the distance 27tp and performs the work 2itpP, and

in n revolutions it performs the work 2xpPn. Then if P be in

pounds and p in inches the imparted horse-power is,

H = 27lpPn
33 ooo X 12

The twisting moment Pp in this expression may be expressed, as

.

in formula (i i), by the resisting moment
sJ

. Hence the equa-

tion becomes,

198 oooc

This is the formula for the discussion of shafts for the transmis-

sion of power, and in it J and c must be taken in inches and 5f

in pounds per square inch, while n is the number of revolutions

per minute.

Prob. 109. What horse-power is required to draw 25 miles per

hour a train weighing 400 tons on a track where the coefficient

of friction is 0.006 and the grade 30 feet per mile ?

Prob. 1 10. A wooden shaft 6 inches square breaks when mak-

ing 40 revolutions per minute. Find the horse-power then proba-

bly transmitted.

ART. 69. ROUND SHAFTS.

For round shafts of diameter d, the values of J and c are to be

taken from Art. 66 and inserted in the last equation, giving,

S
t
= 321 ooo~ or d= 68.5-4

nffi' \nS;
The first of these may be used for investigating the strength of

a given shaft when transmitting a certain number of horse-power
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with a known velocity. The computed values of S
s , compared

with the ultimate values in Art. 67, will indicate the degree of

security of the shaft. Here d must be taken in inches and 5^ will

be in pounds per square inch.

The second equation may be used for determining the diameter

of a shaft to transmit a given horse-power with a given number

of revolutions per minute. Here a safe allowable value must be

assumed for S
s
in pounds per square inch, and then d will be

found in inches. This equation shows that the diameter of a

shaft varies directly as the cube root of the transmitted horse-

power and inversely as the cube root of its velocity.

Prob. in. Find the factors of safety for a wrought iron shaft

2,y2 inches in diameter when transmitting 25 horse-powers while

making 100 revolutions per minute, and also when making 10

revolutions per minute.

Prob. 112. Find the diameter of a wrought iron shaft to trans-

mit 90 horse-powers with a factor of safety of 8 when making

250 revolutions per minute, and also when making 100 revolu-

tions per minute.

ART. 70. SQUARE SHAFTS.

For a square shaft whose side is d formula (12) reduces to,

5 = 267500-^, or 4=64.4 Jl

These are the same as for round shafts except in the numerical

constants, and are to be used in the same manner, the first to in-

vestigate an existing shaft and the second to find the diameter for

one proposed.

Prob. 113. Find the proper diameter of a wooden shaft for a

water wheel which is to transmit 8 horse-power at 20 revolutions

per minute.

Prob. 114. Find the factor of safety of a wooden shaft 12 inches

square when transmitting 16 horse-power at 40 revolutions per

minute.
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ART. 71. MISCELLANEOUS EXERCISES.

Exercise 7. Find in the library a description of Thurston's

autographic testing machine for torsion. Write a condensed de-

scription of it and of the method of its use. Give sketches of the

autographic recording apparatus. Explain how the torsion dia-

grams may be used to study the relative stiffness, elastic limit

and ductility of specimens.

Exercise 8. Go to a testing room and inspect Thurston's test-

ing machine for torsion. Ascertain the dimensions and kind of

specimens tested thereon. Explain with sketches the construction

of the machine and the method of its use. State how the quality

of the specimens is inferred from the torsion diagrams.

Exercise 9. Measure the diameter of a shaft, and ascertain its

velocity and the number of transmitted horse-powers. State in

a short report the data and the results of your investigations.

Prob. 115. Compare the strength of a square shaft with that of

a circular shaft of equal areas.

Prob. 1 1 6. Jones & Laughlins give the formulas,

d = Jte^tf and d =~~

the first for ordinary turned wrought iron shafts, and the second

for cold rolled wrought iron shafts. What working unit-stresses

do these imply ?
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CHAPTER VII.

ON COMBINED STRESSES.

ART. 72. CASES OF COMBINED STRESSES.

The three kinds of simple stress are tension, compression and

shear, or, in other words, the numerical investigation of bodies

under stress includes only the unit-stresses S
t ,
Sc

and S
s

. Trans-

verse or flexural stress was investigated in Chapter III by resolv-

ing the internal stresses into tension, compression and shear.

Torsional stress is merely a particular case of shear.

Tension and compression are similar in character and differ

only in sign or direction. Hence their combination is effected by

algebraic addition. Thus if P be a tensile stress and P a com-

pressive stress applied to the same bar at the same time the result-

ant stress is P P which may be either tensile or compressive.

Tension and shear, or compression and shear, are often com-

bined, as internally in the case of beams and externally under

many circumstances.

Tension and flexure are combined when loads are placed upon
a bar under tension. This case and that of compression and flex-

ure are of frequent occurence, and their investigation is of much

practical importance.

Flexure and torsion are combined whenever shafts for the trans-

mission of power are loaded with pulleys and belts, and, as will

be seen, the effect of the flexure is sensibly to modify the formulas
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of the last chapter. Compression and flexure occur in the case

of vertical shafts.

The internal stresses in a body produced by applied forces are

usually of a complex character. Even in a case of simple tension

there are shearing stresses in all directions except those perpen-

dicular and parallel to the line of tension. If P be the tensile

force and A the area of the cross-section of the bar the tensile

p
unit-stress is , and it may be shown, as in Prob. 26, that a

A
p

shearing unit-stress of y2 exists in a section making an angleA
of 45 degrees with the axis of the bar.

Prob. 1 17. A pulls 29 pounds at one end of a rope and B pulls

30 pounds at the other end. What is the stress in the rope ?

ART. 73. STRESSES DUE TO TEMPERATURE.

If a bar be unstrained it expands when the temperature rises

and contracts when the temperature falls. But if the bar be under

stress, so that the change of length cannot occur, an additional

unit-stress must be produced which will be equivalent to the

unit-stress that would cause the same change of length in the

unstrained bar. Thus if a rise of temperature elongates a bar of

length unity the amount s when free from stress, it will cause the

unit-stress S = sE (see Art. 4) when the bar is prevented from

expanding by external forces.

Let / be the length of the bar, a its coefficient of linear expan-

sion for a change of one degree, and X the change of length due

to the rise or fall of t degrees. Then,

I = atl,

and the unit-strain s is,

The unit-stress produced by the change in temperature hence is,

5= a-tE
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which is seen to be independent of the length of the bar. The

total stress on the bar is then AS.

The following are average values of the coefficients of linear

expansion for a change in temperature of one degree Fahrenheit.

For brick and stone, a = o.ooo oo 50,

For cast iron, a = o.ooo oo 62,

For wrought iron, a = o.ooo oo 67,

For steel. a = o.ooo oo 65.

As an example consider a wrought iron tie rod 20 feet in length

and 2 inches in diameter which is screwed up to a tension of

9 ooo pounds in order to tie together two walls of a building.

Let it be required to find the stress in the rod when the tempera-

ture falls 10 F. Here,

5 = o.ooo oo 67 X 10 X 25 ooo ooo = i 675 pounds.

The total tension in the rod now is,

9 ooo -f- 3.14 X i 675 = 14 ooo pounds.

Should the temperature rise 10 the tension in the rod would be,

9 ooo 3.14 X i 675 = 4 ooo pounds.

In all cases the stresses caused by temperature are added or

substracted to the tensile or compressive stresses already existing.

Prob. 1 1 8. A cast iron bar is confined between two immovable

walls. What unit-stress will be produced by a rise of 40 in

temperature ?

ART. 74. COMBINED TENSION AND FLEXURE.

Consider a beam in which the flexure produces a unit-stress

at the fiber on the tensile side most remote from the neutral axis.

Let a tensile stress P be then applied to the ends of the bar uni-

formly distributed over the cross-section A. The tensile unit-

p
stress at the neutral surface is then and all the longitudinalA
stresses due to the flexure are increased by this amount. The

pmaximum tensile unit-stress is then + S in which j> is to be
A

found from formula (4).
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In designing a beam under combined tension and flexure the

p
dimensions must be so chosen that + -S" shall not exceed the

A
proper allowable working unit-stress. For instance, let it be re-

quired to find the size of a square wooden beam of 12 feet span

to hold a load of 300 pounds at the middle while under a longi-

tudinal stress of 2 ooo pounds, so that the maximum tensile unit-

stress may be about I ooo pounds per square inch. Let d be the

side of the square. From formula (4),

^ __ 6M _ 6 X 150 X 72

~W
~ ~d~

Then from the conditions of the problem,

2000+6480^;
d? d*

from which results the cubic equation,

J3 2d = 64.8,

whose solution gives for d the value 4.25 inches.

In investigating a beam under combined tension and flexure

p
the maximum value of + 6" is to be computed, and the factor

A
of safety found by comparing it with the ultimate tensile strength

of the material.

Prob. 119. A heavy 12-inch I beam carries a uniform load of

200 pounds per linear foot, besides its own weight, and is sub-

jected to a longitudinal tension of 80 ooo pounds. Find the

factor of safety of the beam.

Prob. 1 20. What I beam is required to carry a uniform load

of 200 pounds per linear foot when subjected to a tension of 50 ooo

pounds, the maximum tensile stress to be 9 ooo pounds per

square inch?

ART. 75. COMBINED COMPRESSION AND FLEXURE.

Consider a beam in which the flexure produces a unit-stress 5"

in the fiber on the compressive side most remote from the neutral
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axis. Let a compressive stress P be applied in the direction of

its length uniformly over the cross-section A. Then at the neu-

p
tral surface the unit-stress is - and at the remotest fiber it is

A
p + S. The discussion of this case is hence exactly similar to
A
that of the last article. If the beam is short the total working
unit-stress is to be taken as for a short prism ;

if long it should

be derived from Gordon's formula for columns.

The method of investigation explained in this and the preced-

ing article is the one ordinarily used in practice on account of the

complexity of the formulas which result from the strict mathe-

matical determination of the moments of the applied forces. Al-

though not exact the method closely approximates to the truth,

giving values of the stresses a little too large for the case of ten-

sion and a little too small for the case of compression.

An inclined beam is an instance of combined flexure and com-

pression. In the case shown in

Fig. 47 the reactions are vertical

and their values for any given

loads are found by the principles

of Art. 14. Let
<p
be the inclina-

tion of the beam to the vertical,
F1&47'

and for illustration let the load be

uniform. Then R
t
= R

2 %wl, \iw is the load per linear unit.

At any section x the unit-stress 5 due to the flexure is added to

the compressive unit-stress Se
due to the components of R^ and

wx which are parallel to the beam. Thus for a rectangular beam

whose breadth is b and depth d the formula (4) gives,

<-.
6M ytvlx cos

(p yvx* cos
<p

~~bd*
~

bd*

while from (i) the direct compression is,

<-.
wx sin

<p
R

I
sin

<p~~
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The total compressive unit-stress at the fiber on the upper side

now is,

s,= s + se
=^1? (& --*) + ZJJLS (2*

-
1).

It is easy to show that this is a maximum when,

_ /
,

d tan
<f>~

2

"

~6~
and therefore the maximum unit-stress is,

- _ 3w/
2
cos <p

w sin
<p

tan
<p~~

This equation may be used to determine the factor of safety of a

given beam or to design one proposed.

A rafter of a roof is a case where one of the reactions of the in-

clined beam is horizon-

tal as shown in Fig. 48.

If / be the length, w the

load per linear unit and

<p
the inclination, H is

to be found by Art 14 ;

thus taking the cen-

ter of moments at the

lower end,

H . I sin
<p
= /C S

whence TTH= cot
<p,

For any section x, the flexural unit-stress now is,

<- 6(Hx sin
<p y^wx* cos

<p)

bd*
~

and the uniform compressive unit-stress is,

<-.
H cos

(p -f wx sin
<f>

~~bd~
The total compressive unit-stress on the upper fiber hence is,

c =
bd*

i

wx sn y
bd
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This is a maximum when x has the same value as for the last

case, and,

<-. _ 3o>/
2 cos

<p
wl cosec

<p
w sin

<p
tan

<p~
~2bd~

is the greatest compressive unit-stress.

In any inclined rafter let P denote all the load above a section

distant x from the upper end. Then the greatest unit-stress for

that section is,

c _ Me P sin
tf>

H cos
<p^~T^ ~A~ ~A~

from which Sw may be found for any given case.

Prob. 121. A wooden beam 10 inches wide and 8 feet long
carries a uniform load of 500 pounds per linear foot and is sub-

jected to a longitudinal compression of 40 ooo pounds. Find the

depth of the beam so that the maximum working unit-stress may
be about 800 pounds per square inch.

Prob. 122. A roof with two equal rafters is 40 feet in span and

15 feet in height. The wooden rafters are 4 inches wide, 6

inches deep and carry 450 pounds per linear foot. Find the fac-

tor of safety of the rafters.

Prob. 123. A roof with two equal rafters is 40 feet in span and

1 5 feet in height. The wooden rafters are 4 inches wide and each

carries a load of 450 pounds at the center. Find the depth of the

rafter so that Sm may be 700 pounds per square inch.

ART. 76. SHEAR COMBINED WITH TENSION OR COMPRESSION.

Let a bar whose cross-section is A be subjected to the longi-

tudinal tension or compression P and at the same time to a shear

V at right angles to its length. The longitudinal unit-stress is

P V_ which may be denoted by /, and the shearing unit-stress is

A A
which may be denoted by v. It is required to find the maximum

unit-stresses produced by the combination of/ and v. In the fol-

lowing demonstration P will be regarded as a tensile force,
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although the reasoning and conclusions apply equally well when

it is compressive.

Consider an elementary cubic particle with edges one unit in

length acted upon by the horizontal tensile force p and p, and by

the vertical shear v and v, as shown in
If

Fig. 49. These forces are not in equilib-

rium unless a horizontal couple be ap-

plied as in the figure, each ofwhose forces

is equal to v. Therefore at every point

of a body under vertical shear there ex-

ists a horizontal shear, and the horizon-

tal shearing unit-stress is equal to the vertical shearing unit-stress.

Let a parallelopipedal element have the length dm, the height

dn and a width of unity.

The tensile force pdn tends

to pull it apart longitudinally.

The vertical shear vdn tends

to cause rotation and this is

resisted, as shown above, by
the horizontal shear vdm. These forces may be resolved into

rectangular components parallel and perpendicular to the diagonal

dz, as shown in Fig. 50. The components parallel to the diago-

nal form a shearing force sdz, and those perpendicular to it a ten-

sile force tdz, s being the shearing and / the tensile unit-stresses.

Let
(p
be the angle between dz and dm. The problem is first to

state expressions for sdz and tdz in terms of
<p,

and then to de-

termine the value of
<p,

or the ratio of dm to dn, which gives the

maximum values of s and /.

By simple resolution of forces,

sdz pdn cos
<p -\- vdm cos

<p
vdn sin

<p,

tdz = pdn sin
<p -f- vdm sin

<p -}- vdn cos
<p.

Divide each of these by dz, for put its value sin
<f>
and for

dz dz
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its value cos
<p.

Then the equations take the form,

s = p sin
(p

cos
<p' -\- z/(cos

2

<p
sin2

<p),

t = p sin2

<p + 2v sin
<p

cos
<p.

These may be written,

s = y^t sin 2<p + s cos
2<f>,

t = y2 t (i cos
2<f>) -f- j sin

2^>.

By placing the first derivative of each of these equal to zero it

is found that,

s is a maximum when tan 2<p = ,

2V

, 2V
t is a maximum when tan 2<p

=
A

Expressing sin
2(f>

and cos
2<f>

in terms of tan 2(p and inserting

them in the above the following values result,

max s =

<">
/max t =

4'

These formulas apply to the discussion of the internal stresses

in beams, as well as to combined longitudinal stress and vertical

shear directly applied by external forces. If/ is tension t is ten-

sion
;

ifp is compression / is also compression.

Prob. 124. A rivet ^-inch in diameter is subjected to a tension

of 2 ooo pounds and at the same time to a cross shear of 3 ooo

pounds. Find the maximum tensile and shearing unit-stresses

and the directions they make with the axis of the rivet.

ART. 77.. COMBINED FLEXURE AND TORSION.

This case occurs when a shaft for the transmission of power is

loaded with weights. Let vS be the greatest flexural unit-stress

computed from (4) and 5^ the torsional shearing unit-stress com-

puted from (12) or by the special equations of Arts. 68 and 69.
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Then, according to the last article the resultant maximum unit-

stresses are,

6" / ^2
max. ten. or comp. / = -

_j-
. I .$/ -f-

-

max shear s = I $ -f __
>f

'

4

For wrought iron or steel it is usually necessary to regard only

the first of these unit-stresses, but for timber the second should

also be kept in view.

For example, let it be required to find the factor of safety of a

wrought iron shaft 3 inches in diameter and 1 2 feet between bear-

ings, which transmits 40 horse-power while making 120 revolu-

tions per minute, and upon which a load of 800 pounds is brought

by a belt and pulley at the middle. Taking the shaft as fixed

over the bearings the flexural unit-stress is,

API
6 = ^- = 5 400 pounds per square inch.

From Art. 68 the torsional unit-stress is,

T T

S
s =321 ooo 4 ooo pounds per square inch.

The maximum tensile and compressive unit-stress now is,

t= 2 700 -f- y'4 ooo2
-f 2 7OO

2 = 7 600 pounds per square in.

and the factor of safety is hence over 7.

As a second example, let it be required to find the size of

a square wooden shaft for a water wheel weighing 3 ooo pounds
which transmits 8 horse-power while making 20 revolutions per

minute. The length of the shaft is 16 feet and one-third of the

weight is concentrated at the center and the remainder is equally

divided between two points each 6 feet from the center. Here

the greatest flexural unit-stress is,

5 = 6
(

r SOP X 96 i ooo X 72) _ 49 200

d~ ' ~
d*

'
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and from Art. 69 the torsional unit-stress is,

_ 267 500 X 8 __ 107 ooo
*
~ ~~~~

From the formula of the last article the combined tensile or com-

pressive stress is,

f= I3440Q.
fc

Now if the working value of t be taken at 600 pounds per square

inch the value of d will be about 6 inches. From formula
(

1 3) also

_ 109 800

fc

and if the working value of s be taken at 1 50, the value of d is

found to be about 9 inches. The latter value should hence be

chosen for the size of the shaft.

Prob. 125. Prove that the formula for finding the diameter of a

round iron shaft is,

l6M
\

M*

4 2"
t \ 7T

2 H
Kt t\7f n

where M is the maximum bending moment of the transverse

forces in pound-inches,H the number of transmitted horse-power,

n the number of revolutions per minute, and t the safe allowable

tensile or compressive working strength of the material.

ART. 78. COMBINED COMPRESSION AND TORSION,

In the case of a vertical shaft the torsional unit-stress S
t
com-

bines with the direct compressive stress due to the weights upon
the shaft, and produces a resultant compression t and shear s.

From formulas (13) the combined stresses are,

*=+>
4

The use of these is the same as those of the last article, 5f being
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found from the formulas of chapter VI, while S
c
is computed from

formula (i) if the length of the shaft be less than ten times its

diameter and from (10) for greater lengths.

Prob. 1 26. A vertical shaft, weighing with its loads 6 ooo

pounds, is subjected to a twisting moment by a force of 300

pounds acting at a distance of 4 feet from its center. If the shaft

is wrought iron, 4 feet long and 2 inches in diameter, find its

factor of safety.

Prob. 1 27. Find the diameter of a short vertical steel shaft to

carry loads amounting to 6 ooo pounds when twisted by a force

of 300 pounds acting at a distance of 4 feet from the center, taking
the unit-stress against tension as 10 ooo and against shearing as

7 ooo pounds per square inch.
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CHAPTER VIII.

APPENDIX AND TABLES.

ART. 79. HORIZONTAL SHEAR IN BEAMS.

The common theory of flexure as presented in Chapters III and

IV considers that the internal stresses at any section are resolved

into their horizontal and vertical components, the former produc-

ing longitudinal tension and compression and the latter a trans-

verse shear, and that these act independently of each other.

Formula (3) supposes further that the vertical shear is uniformly

distributed over the cross-section of the beam. A closer analysis

will show that a horizontal shear exists also and that this,

together with the vertical shear, varies in intensity from the neu-

tral surface to the upper and lower sides of the beam. It is well-

known that a pile of boards which acts like a beam deflects more

than a solid timber of the same depth, and this is largely due to

the lack of horizontal resistance between the layers. The com-

mon theory of flexure in neglecting the horizontal shear gener-

ally errs on the side of safety. In a few experiments however

beams have been known to crack along the neutral surface and it

is hence desirable to investigate the effect of horizontal shear in

tending to cause rupture of that kind. That a horizontal shear

exists simultaneously with the vertical shear is evident from the

considerations in Art. 76.

Let Fig. 5 1 represent a portion of a bent beam of uniform sec-

tion. Let a rectangular notch nmpq be imagined to be cut into
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it, and let forces be applied to it to preserve the equilibrium.

Let H be the

sum of all the

horizontal com- '

ponents of these

forces acting on

mn and H' the

sum ofthose act-

ing on qp. Now
H' is greater or less than //, hence the difference H' H must

act along mq as a horizontal shear. Let the distance mq be dx,

the thickness mm 1 be b, and the area mqmm' be at a distance c'

above the neutral surface. Let c be the distance from that

neutral surface to the remotest fiber where the unit-stress is 6".

Let a be the cross-section of any fiber. Let M be the bending

moment at the section mn and M' that at the section qp. Now
from the fundamental laws of flexure,

= unit-stress at a unit's distance from neutral surface.

= unit-stress at distance y from neutral surface,-y

a y = total stress on fiber a at distance y,

= sum of horizontal stresses between m and n.

The value of H hence is, since ,

c I

and likewise,

The horizontal shear therefore is,

if<-ff=*^.
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Now since the distance mq is dx, the value of M' M is dM.

Also if Sh be the horizontal shearing unit-stress upon the area

bdx the value of H' H is Shbdx. Hence,

Again from Art. 41 it is plain that - is the vertical shear V

at the section under consideration. Therefore,

is the formula for the horizontal unit-shear at any point of the

beam.

This expression shows that the horizontal unit-shear is great-

est at the supports, and zero at the dangerous section where Fis

zero. The summation expression is the statical moment of the

area mm'nn' with reference to the neutral axis
;

it is zero when

y = c, and a maximum when y = o. Hence the longitudinal

unit-shear Sh is zero at the upper and lower sides of the beam

and is a maximum at the neutral surface. The formula for the

maximum horizontal unit-shear therefore is,

max V c

St = f Z,<y.

Here / is the moment of inertia of the whole cross-section with

reference to the neutral axis (Art. 22), b is the width of the beam

along the neutral surface, and 3? ay is the statical moment of

the area of the part of the cross-section on one side of the

neutral axis.

For a rectangular beam of breadth b and depth d, the value of

. bd* . bd d bd* .

f is , and 2, ay = -
. Then,

12 24
5 - ^
Sh ~ -M'

By inserting in this the values of V for particular sections the

corresponding values of Sh are found.
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Prob. 1 28. Prove that for a cylindrical beam of diameter d the

horizontal unit-shear along the neutral surface is J-
3^2

'

Prob. 1 29. In the Journal of the Franklin Institute for Febru-

ary, 1883, is detailed an experiment on a spruce joist 3^X12
inches and 14 feet long, which broke by tension at the middle

and afterwards by shearing along the neutral axis at the end

when loaded at the middle with 12 545 pounds. Find the tensile

and shearing unit-stresses.

ART. 80. MAXIMUM INTERNAL STRESSES IN BEAMS.

From the last article it is evident that at every point of a beam

there exists a horizontal unit-shear of the intensity Sh and also a

vertical unit-shear of the same intensity, whose value is given by

(14). At every point there also exists a longitudinal tension or

compression which may be computed from (4) with the aid of the

principle that these stresses vary directly as their distances from

the neutral axis. Let v denote the unit-shear thus determined

and p the tensile or compressive unit-stress. Then from Art. 76

the maximum unit-shear at that point is,

and it makes an angle (p
with the neutral surface such that,

h
tan 2<p =

2V

Also the tensile or compressive unit-stress at that point is,

and it makes an angle 6 with the neutral surface such that,

From these formulas the lines of direction of the maximum
stresses may be traced throughout the beam.
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For the maximum shear v is greatest and p is zero at the neu-

tral surface, while v is zero and p is greatest at the upper and

lower surfaces. Hence for the neutral surface
<p

is o, it increases

with/, and becomes 45 at the upper and lower surfaces.

For the maximum tension / is greatest and equal to p on the

convex side where v = o and 6 = 0. As the neutral surface is

approached v increases, p decreases, and 6 increases. At the neu-

tral surface v is greatest, p is zero, and 6 = 45. Here the

maximum tension and compression are each equal to v.

For the maximum compression in like manner 6 is o at the

concave surface and 45 at the neutral surface. The lines of max-

imum tension if produced beyond the neutral surface would evi-

dently cut those of maximum compression at right angles and be

vertical at the concave surface.

The following figure is an attempt to represent the lines of

maximum stress in

a beam. The full

lines above the neu-

tral surface are those

of maximum com-

pression, while those

below are maximum

tension. The broken

lines are those of

maximum shear. On

any line the intensity of stress varies with the inclination, being

greatest where the line is horizontal and least where its inclina-

tion is 45. The lines of maximum shear cut those of maximum

tension and compression at angles of 45. The lines of maxi-

mum tension above the neutral surface and those of maximum

compression below it are not shown.

It appears from the investigation that the common theory of

flexure gives the horizontal unit-stress correctly at the dangerous
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section of a simple beam where the vertical shear is zero. At other

sections the stress 5 as computed from (4) is correct for the re-

motest fiber, but for other fibers the unit-stress t is greater. It is

hence seen that the main practical value of the theory of internal

stress is in showing that the intensity of the shear varies through-

out the cross-section of the beam. For a restrained beam, where

the vertical shear suddenly changes sign at the dangerous

section, the common theory gives the horizontal stress 5" correctly

for the remotest fiber only, and it might be possible for the maxi-

mum stress t to be greater than 5" for a fiber nearer to the neutral

surface.

Prob. 130. A joist fixed at both ends is 3 X 12 inches and 12

feet long, and is strained by a load at the middle, so that the value

of 5" as computed from (4) is 4 ooo pounds per square inch. Find

the value of / for points over the support distant 3,4 and 5 inches

from the neutral surface.

ART. Si. THE FATIGUE OF MATERIALS.

The ultimate strength Su is usually understood to be that unit-

stress which causes rupture at one application. Experience and

experiments, however, teach that if a unit-stress somewhat less

than Su be applied a sufficient number of times to a bar rupture

will be caused. The experiments of Wohler have been of the

greatest value in establishing the laws which govern the rupture

of metals under repeated applications of stress. For instance, he

found that the rupture of a bar of wrought iron by tension was

caused in the following different ways.

By 800 applications of 5 2 800 pounds per square inch.

By 107 ooo applications of 48 400 pounds per square inch.

By 450 ooo applications of 39 ooo pounds per square inch.

By 10 140 ooo applications of 35 ooo pounds per square inch.

The range of stress in each of these applications was from o to

the designated number of pounds per square inch. Here it is seen
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that the breaking stress decreases as the number of applications

increase. In other experiments where the initial stress was not o,

but a permanent value S, the same law was seen to hold good.

It was further observed that a bar could be strained from o up to

its elastic limit an enormous number of times without rupture.

From a discussion of his numerous experiments Wohler stated

the following laws.

1. By repeated applications of stress rupture may be caused

by a unit-stress less in value than the ultimate strength

of the material.

2. The greater the range of stress the less is the unit-stress

required to produce rupture after an enormous number of

applications.

3. When the stress ranges from o up to a value about equal

to the elastic limit the number of applications required to

rupture it is enormous, or greater than could be applied

in practice.

4. A range of stress from tension into compression, or vice

versa, produces rupture sooner than the same range in

stress of one kind only.

5. When the range of stress in tension is equal to that in

compression the stress which will produce rupture after

an enormous number of applications is a little greater

than one-half the elastic limit.

The term ' enormous number '

used in stating these laws means

about 40 millions, that being roughly the number used by Woh-

ler to cause rupture under the conditions stated. For all practi-

cal cases of repeated stress, except in fast moving machinery, this

great number would seldom be exceeded during the natural life

of the piece.

In Art. 8 it was recognized that the working strength should

be less for pieces subject to varying stresses than for those carry-

ing steady loads only. For many years indeed it has been the
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practice of designers to grade the working strength according to

the range of stresses to which it might be liable to be subjected,

Wohler's laws and experiments afford however a means of

grading these values in a more satisfactory manner than mere

judgment can do, and a formula for that purpose will be deduced

in the next article. After the working strength Sw is determined

the cross-section of the piece is found in the usual way, if in

tension by formula (i), and if in compression by formula (i) or

(10) as the case may require.

Prob. 131. How many years will probably be required for a tie

bar in a bridge truss to receive 40 million repetitions of stress ?

ART. 82. WORKING STRENGTH FOR REPEATED STRESSES.

Consider a bar in which the unit-stress varies from Sf to S,

the latter being the greater numerically. Both S' and S may be

tension or both may be compression, or one may be tension and

the other compression. In the last case the sign of Sf
is to be

taken as minus. Consider the stress to be repeated an enormous

number of times and rupture to then occur. By Wohler's second

law .S is some function of the range of stress, or,

s = <;>(s-s>).

This may be expressed in another way, thus,

or, in words, the rupturing stress S after an enormous number of

repetitions is a function of the ratio of the limiting stresses.

Let u be the ultimate strength of the material, tensile if >S is

tension and compressive if 5 is compression. Let e be the unit-

stress at the elastic limit, and f the unit-stress which produces

rupture after an enormous number of repetitions when the range

of stress in tension is equal to that in compression. It is required

to find the value of S in terms of u, e, f and the ratio . For
O
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this purpose assume the function,

in which m, n and p are quantities to be determined. Now if

S' = S, there is no range of stress, and the case corresponds to

that of a steady load for which 6" = ti. Again, let S' = o, then

by Wohler's third law S = e. Lastly, let S' = S, then by
Wohler's fifth law the value of 6" is f. For these three condi-

tions the assumed function becomes,

For S' = S, u = me -\-n-\-p,

For S' = o, e = me,

For S' = S, f= me n + p.

From these three equations are found the values,

u / u + f 2.em = i, n =--, p = ^-- .

2 2

and the expression for S hence is,

This formula is not to be regarded as the true law of rupturing

strength under repeated stresses, but merely as an empirical state-

ment which agrees with the limiting values determined by experi-

ment, and which will give approximately intermediate values.

In designing a bar which is to be subject to an enormous num-

ber of repetitions of stress, ranging from P to P, the ratio

P1 S'__ is the same as , and formula (15) gives the unit-stress J>

Jr o

which will cause rupture. To be sure of safety a factor of security

must be applied ;
if a be this factor, (15) becomes the formula for

working strength, or,

( I5y 5 _<_(, + 1=/P + "+f-2ef'\*
iV 2C 7^ 2^ P*)

from which the proper unit-stress may be computed. The factor

of security a is here usually taken the same as the factor of safety

for a steady load where there is no range of stress.
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For example, consider a kind of wrought iron for which

u = 55 ooo, e = 25 ooo, and f = 12 500. Then with a factor

of 4, formula (15) becomes,

Here P is the minimum and Pthe maximum stress to which the

piece is to be subjected, the first due perhaps to dead load and

the second to combined dead and live load. The following are

values of Sw for certain ratios of P to P.

For ~ = i, Sw = 13 750,

For
-p
= rt, Sw =n 46o,

P
For -- = y2 ,

Sw = 9 400,

For ~=y4 ,
Sw = 7715,

For 3=0, Sw = 6 250,

For = - ^, 5W = 4 720,

For -= = ^3, Sw = 4 030,

For
P
p= l

>
S ,=-- 3 125.

For the first four values P and P are both tensile or both com-

pressive, and in the last three values P is the reverse of P. If P
be tension the computed values of 5 are to be used at once in

formula (i) for finding the cross-sections, but if Pbe compression

the length of the piece should be taken into account by formula

(10) if necessary.

As a first example, let it be required to find the proper cross-

section of a wrought iron bar which is to be subjected to a re-
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peated tension ranging from 30 ooo to 90 ooo pounds. Here

P
p-
= X, and,

=
6250(1+ g +-;)= 8 250.

Then the cross-section of the bar is ?--- 1 1 square inches
8 250

For a second example, let it be required to find the cross-section

of a wrought iron bar which is to be subjected to repeated stress

ranging from 30 ooo pounds compression to 90 ooo tension.

P
Here _ %, and from the formula Sw = 4 720. Then

the cross-section should be ?-- 19 square inches.

4720
As a third example, the cross-section of a wrought iron bar is

required when the stress ranges from 30 ooo pounds compression

to 90 ooo compression. Here as before S^ = 8 250. This value

is now to be placed for S
c

in Gordon's formula, and the cross-

section may then be found as in Art. 61, for any given length.

The quantity / which is the unit-stress required to produce

rupture after an enormous number of repetitions in alternating

stress of equal amplitudes, was called the
'

vibration strength
'

by
Wohler. Its value for wrought iron is about one-half and for

steel a little greater than one-half the elastic limit. For cast iron

u and e are greater in tension than in compression and this should

be borne in mind when using formula (15).

Prob. 132. A steel bar one inch in diameter is subject to re-

peated stress ranging between 1 5 ooo pounds tension and 40 ooo

pounds tension. Will it break after an enormous number of

repetitions ?

Prob. 133. Find the proper cross-section for a cast iron bar 12

feet long when subjected to repeated tension ranging from 30 ooo

to 90 ooo pounds. Also its cross-section when subjected to re-

peated compression ranging between the same limits,
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ART. 83. THE RESILIENCE OF MATERIALS.

When an applied stress causes a deformation or strain work is

done. Thus if a tensile stress P be applied by increments to a

bar, so that the stress gradually increases from o to the value P,

the work done is the product of the average stress by the total

elongation X. This product is termed the resilience of the bar.

If the stress does not exceed the elastic limit of the material the

average stress is %P, and the work or resilience is ^j/
3
/. If the

cross-section of the bar be A and its length /, the unit-stress is

P )_ or S, and the unit-strain is - or s, so that the work done on
A I

each unit of length of the bar per unit of cross-section is

From formula (

may be written,

From formula (2) the value of s is
,
and accordingly this work

If 6" be the unit-stress at the elastic limit, the quantity K is

called the modulus of resilience of the material.

Resilience is a measure of the capacity of a material to with-

stand shock, for if a shock or sudden stress be produced by a fall-

ing body, its intensity depends upon the weight and the height

through which it has fallen, that is, upon its kinetic energy or

work. The higher the resilience of a material the greater is its

capacity to resist shocks. The modulus of resilience is a measure

of this capacity within the elastic limit only.

The following are values of the modulus of resilience as com-

puted from (16) by the use of the average constants given in Art. 5.

For timber, K = 3.0 inch-pounds,

For cast iron, K = 1.2 inch-pounds,

For wrought iron, K = 12.5 inch-pounds,

For steel, K = 26.5 inch-pounds.

The ultimate resilience of materials cannot be expressed by a
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rational formula, because the law of increase of elongation beyond
the elastic limit is unknown. In Fig. i the ultimate resilience is

indicated by the area between any curve and the axis of abscissas,

since that area has the same value as the total work performed in

producing rupture. For timber and cast iron the ratio of these

areas is about the same as that of the values of K, but for wrought
iron and steel the areas are nearly equal.

Prob. 134. What horse-power engine is required to strain 125

times per minute a bar of wrought iron 2 inches in diameter and

1 8 feet long, from o up to one-half its elastic limit?

ART. 84. TABLES OF CONSTANTS.

The following tables recapitulate the mean values of the con-

stants of the strength of materials which have been given in the

preceding pages. It is here again repeated that these values are

subject to wide variations dependent on the kind and quality of

the material, and for many other reasons. Timber, for instance,

varies in strength according to the climate where grown, the soil,

the age of the tree, the season of the year when cut, the method

and duration of the process of seasoning, the part of the tree used,

the knots and wind shakes, the form and size of the test specimen

and the direction of its fibers, so that it is a difficult matter to

state definite numerical values concerning its elasticity and

strength. The quality of the material causes a yet wider variation,

so wide in fact that in some cases testing machines alone could

scarcely distinguish between wrought iron and steel
;

for while

the higher grades of steel have much greater strength than the

tables give, the mild structural and merchant steels may have

values almost as low as the average constants for wrought iron.

In general, therefore, the following values should not be used in

actual cases of investigation and design except for approximate

computations.
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Detailed tables giving the results of experiments upon numer-

ous kinds and qualities of materials may be found in the

following books.

Wood's Resistance of Materials; New York, 1880.

Burr's Elasticity and Strength of Materials
;
New York, 1883.

Thurston's Materials of Engineering ;
New York, 1884.

Trautwine's Engineers' Pocket Book
;
New York, 1885.

Lanza's Applied Mechanics; New York, 1885.

TABLE I.

TABLE II.
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TABLE III.

VIII.

TABLE IV.
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